Transformer Meets GAN: Cloud-Free Multispectral Image Reconstruction via Multisensor Data Fusion in Satellite Images

计算机科学 多光谱图像 云计算 遥感 人工智能 计算机视觉 合成孔径雷达 基本事实 传感器融合 迭代重建 地质学 操作系统
作者
Congyu Li,Xinxin Liu,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:6
标识
DOI:10.1109/tgrs.2023.3326545
摘要

Cloud-free image reconstruction is of great significance for improving the quality of optical satellite images that are vulnerable to bad weather. When cloud cover makes it impossible to obtain information under the cloud, auxiliary data is indispensable to guide the reconstruction of the cloud-contaminated area. Additionally, the areas that require continuous observation are mostly regions with complex features, which puts higher demands on the restoration of texture, color, and other details in data reconstruction. In this paper, we propose a Transformer-based generative adversarial network for cloud-free multispectral image reconstruction via multi-sensor data fusion in satellite images (TransGAN-CFR). Synthetic Aperture Radar (SAR) images that are not affected by clouds are used as auxiliary data and paired with cloudy optical images into the GAN generator. To take advantage of the deep-shallow features and global-local geographical proximity in remote sensing images, the proposed generator employs a hierarchical Encoder-Decoder structure, in which the Transformer blocks adopt a non-overlapping window multi-head self-attention (WMSA) mechanism and a modified feed-forward network though depth-wise convolutions and the gating mechanism. Besides, we introduce a Triplet loss function specifically designed for cloud removal tasks to provide the generated cloud-less image with greater proximity to the ground truth. Compared with seven state-of-the-art deep learning-based cloud removal models, our network can yield more natural cloud-free images with better visual performance and more accurate results in quantitative evaluation on the SEN12MS-CR dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫翠桃完成签到,获得积分0
刚刚
邓桂灿完成签到,获得积分10
1秒前
1秒前
ming发布了新的文献求助10
1秒前
1秒前
yydragen应助lydias采纳,获得30
1秒前
1秒前
2秒前
星星发布了新的文献求助10
2秒前
yangyangyang发布了新的文献求助10
3秒前
萝菠吃不发布了新的文献求助10
3秒前
3秒前
丘比特应助小爱同学采纳,获得10
4秒前
hwl26完成签到,获得积分10
5秒前
5秒前
5秒前
Jamesliu完成签到,获得积分10
7秒前
于春梅完成签到,获得积分20
7秒前
pure发布了新的文献求助10
7秒前
俏皮蜜蜂发布了新的文献求助10
9秒前
HE发布了新的文献求助10
9秒前
9秒前
wmhappy发布了新的文献求助10
9秒前
10秒前
11秒前
禾苗完成签到,获得积分10
11秒前
11秒前
12秒前
孙燕应助寂寞的灵采纳,获得10
12秒前
萝卜筐完成签到,获得积分10
12秒前
13秒前
13秒前
赵油油发布了新的文献求助10
14秒前
xhd183完成签到 ,获得积分10
14秒前
15秒前
木木完成签到,获得积分10
15秒前
Leon发布了新的文献求助10
16秒前
Aliothae发布了新的文献求助10
17秒前
英俊的铭应助难过小懒虫采纳,获得10
17秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597