Transformer Meets GAN: Cloud-Free Multispectral Image Reconstruction via Multisensor Data Fusion in Satellite Images

计算机科学 多光谱图像 云计算 遥感 人工智能 计算机视觉 合成孔径雷达 基本事实 传感器融合 迭代重建 地质学 操作系统
作者
Congyu Li,Xinxin Liu,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:6
标识
DOI:10.1109/tgrs.2023.3326545
摘要

Cloud-free image reconstruction is of great significance for improving the quality of optical satellite images that are vulnerable to bad weather. When cloud cover makes it impossible to obtain information under the cloud, auxiliary data is indispensable to guide the reconstruction of the cloud-contaminated area. Additionally, the areas that require continuous observation are mostly regions with complex features, which puts higher demands on the restoration of texture, color, and other details in data reconstruction. In this paper, we propose a Transformer-based generative adversarial network for cloud-free multispectral image reconstruction via multi-sensor data fusion in satellite images (TransGAN-CFR). Synthetic Aperture Radar (SAR) images that are not affected by clouds are used as auxiliary data and paired with cloudy optical images into the GAN generator. To take advantage of the deep-shallow features and global-local geographical proximity in remote sensing images, the proposed generator employs a hierarchical Encoder-Decoder structure, in which the Transformer blocks adopt a non-overlapping window multi-head self-attention (WMSA) mechanism and a modified feed-forward network though depth-wise convolutions and the gating mechanism. Besides, we introduce a Triplet loss function specifically designed for cloud removal tasks to provide the generated cloud-less image with greater proximity to the ground truth. Compared with seven state-of-the-art deep learning-based cloud removal models, our network can yield more natural cloud-free images with better visual performance and more accurate results in quantitative evaluation on the SEN12MS-CR dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的正豪完成签到,获得积分10
刚刚
刚刚
你好好想想完成签到,获得积分10
1秒前
oyc完成签到,获得积分10
1秒前
wong发布了新的文献求助10
1秒前
元橘完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
2秒前
2秒前
英姑应助麻花阳采纳,获得10
3秒前
wind完成签到,获得积分10
3秒前
无宇伦比完成签到,获得积分10
3秒前
3秒前
小小陈发布了新的文献求助10
3秒前
Jasper应助被划分采纳,获得10
4秒前
子非鱼完成签到,获得积分10
4秒前
4秒前
RC_Wang发布了新的文献求助10
4秒前
4秒前
4秒前
Owen应助深情的安青采纳,获得10
4秒前
罗文靓发布了新的文献求助10
5秒前
张mingyu123发布了新的文献求助10
5秒前
5秒前
小小完成签到,获得积分10
5秒前
6秒前
6秒前
cty完成签到,获得积分10
6秒前
阳光初夏完成签到,获得积分10
6秒前
青青发布了新的文献求助10
7秒前
慕青应助全明星阿杜采纳,获得10
7秒前
赵小哼完成签到,获得积分10
7秒前
8秒前
8秒前
背后的小兔子完成签到,获得积分10
8秒前
科研完成签到,获得积分10
8秒前
Yuuuuu发布了新的文献求助10
9秒前
树下小草完成签到,获得积分10
9秒前
9秒前
不配.应助淡然的妙芙采纳,获得100
9秒前
大头完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261224
求助须知:如何正确求助?哪些是违规求助? 4422343
关于积分的说明 13765975
捐赠科研通 4296787
什么是DOI,文献DOI怎么找? 2357517
邀请新用户注册赠送积分活动 1353903
关于科研通互助平台的介绍 1315103