Transformer Meets GAN: Cloud-Free Multispectral Image Reconstruction via Multisensor Data Fusion in Satellite Images

计算机科学 多光谱图像 云计算 遥感 人工智能 计算机视觉 合成孔径雷达 基本事实 传感器融合 迭代重建 地质学 操作系统
作者
Congyu Li,Xinxin Liu,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:6
标识
DOI:10.1109/tgrs.2023.3326545
摘要

Cloud-free image reconstruction is of great significance for improving the quality of optical satellite images that are vulnerable to bad weather. When cloud cover makes it impossible to obtain information under the cloud, auxiliary data is indispensable to guide the reconstruction of the cloud-contaminated area. Additionally, the areas that require continuous observation are mostly regions with complex features, which puts higher demands on the restoration of texture, color, and other details in data reconstruction. In this paper, we propose a Transformer-based generative adversarial network for cloud-free multispectral image reconstruction via multi-sensor data fusion in satellite images (TransGAN-CFR). Synthetic Aperture Radar (SAR) images that are not affected by clouds are used as auxiliary data and paired with cloudy optical images into the GAN generator. To take advantage of the deep-shallow features and global-local geographical proximity in remote sensing images, the proposed generator employs a hierarchical Encoder-Decoder structure, in which the Transformer blocks adopt a non-overlapping window multi-head self-attention (WMSA) mechanism and a modified feed-forward network though depth-wise convolutions and the gating mechanism. Besides, we introduce a Triplet loss function specifically designed for cloud removal tasks to provide the generated cloud-less image with greater proximity to the ground truth. Compared with seven state-of-the-art deep learning-based cloud removal models, our network can yield more natural cloud-free images with better visual performance and more accurate results in quantitative evaluation on the SEN12MS-CR dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zbj完成签到 ,获得积分10
1秒前
青年才俊发布了新的文献求助10
1秒前
1秒前
Oil完成签到,获得积分10
1秒前
2秒前
一颗小纽扣完成签到,获得积分10
3秒前
斯文败类应助李李李采纳,获得10
3秒前
科研小白发布了新的文献求助10
3秒前
脑洞疼应助荔枝采纳,获得10
3秒前
芋泥芝士发布了新的文献求助10
4秒前
科研王完成签到 ,获得积分10
4秒前
斯文败类应助胡慧婷采纳,获得10
5秒前
5秒前
Chaimengdi完成签到,获得积分10
5秒前
刘璐发布了新的文献求助10
6秒前
kermitds发布了新的文献求助20
6秒前
hzh发布了新的文献求助10
8秒前
爆米花应助微笑笑萍采纳,获得30
8秒前
鲤鱼诗桃发布了新的文献求助10
8秒前
万能图书馆应助yytt采纳,获得10
9秒前
刘骁萱完成签到 ,获得积分10
10秒前
曾无忧完成签到,获得积分10
10秒前
哈吉米曼波完成签到,获得积分10
11秒前
11秒前
11秒前
小蘑菇应助白baibbb采纳,获得10
11秒前
xzlijingjing完成签到 ,获得积分10
12秒前
终日梦鱼完成签到 ,获得积分10
12秒前
13秒前
完美世界应助陶陶采纳,获得10
14秒前
RogerCHEN完成签到,获得积分10
14秒前
矿矿完成签到,获得积分10
14秒前
bobochi发布了新的文献求助10
14秒前
14秒前
感动帅哥完成签到,获得积分10
15秒前
顺其自然发布了新的文献求助10
15秒前
橙子完成签到,获得积分20
17秒前
hzh完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097035
求助须知:如何正确求助?哪些是违规求助? 4309550
关于积分的说明 13427646
捐赠科研通 4136934
什么是DOI,文献DOI怎么找? 2266413
邀请新用户注册赠送积分活动 1269483
关于科研通互助平台的介绍 1205787