Improvement of data imbalance for digital soil class mapping in Eastern China

班级(哲学) 中国 数字土壤制图 土壤图 环境科学 遥感 地图学 地理 计算机科学 数据挖掘 土壤水分 人工智能 土壤科学 考古
作者
Liping Wang,Xiang Wang,Yahya Kooch,Kaishan Song,Donghui Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108322-108322 被引量:1
标识
DOI:10.1016/j.compag.2023.108322
摘要

A fine-resolution digital soil class map is needed. However, the problem of imbalanced data leads to an inaccurate spatial distribution of the digital soil class map, and the spatial resolution of digital soil class maps at a large scale is low in existing studies. Based on these points, an algorithm of over-sampling and under-sampling was introduced to solve the problem of imbalanced data, and to improve the performance of soil classification model. 316 topsoil samples with eight main soil classes at the great group level were collected in Eastern China. Eight out of twelve prediction variables were determined after the importance evaluation by "Mean Decrease Accuracy" in the random forest (RF) model, including digital elevation model (DEM), enhanced vegetation index (EVI), land surface wetness index (LSWI), land surface temperature (LST), normalized differenced vegetation index (NDVI), and soil texture components. RF model was also applied to complete digital soil class mapping, and the results of treated (over-sampling and under-sampling by randomly increasing or decreasing the number of samples) and untreated data were compared and discussed. Research results indicated that modeling by imbalanced data resulted in uncertain soil classes mapping, with minority classes were lost and with lower accuracies than those of balanced data (overall accuracy = 83.83 %, kappa coefficient = 0.79). After over-sampling and under-sampling treatments, these problems were well solved with an overall accuracy of 96.72 % and a kappa coefficient of 0.93. The accuracy of soil class prediction for minority classes were improved by 12.5 %–54.5 %. Compared to the existing conventional soil map, the new map with a fine resolution of 30 × 30 m is time-effective and more detailed. Validation (point-validation and map-to-map comparison) of the predicted map showed that the output is reliable and can provide a reference for other soil and environmental studies without major difficulties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHANGMANLI0422关注了科研通微信公众号
刚刚
M先生发布了新的文献求助30
1秒前
FashionBoy应助许多知识采纳,获得10
2秒前
Poyd完成签到,获得积分10
5秒前
5秒前
故意的傲玉应助tao_blue采纳,获得10
6秒前
6秒前
kid1912完成签到,获得积分0
6秒前
小马甲应助一网小海蜇采纳,获得10
9秒前
专一的笑阳完成签到 ,获得积分10
9秒前
xuesensu完成签到 ,获得积分10
13秒前
豌豆完成签到,获得积分10
14秒前
M先生完成签到,获得积分10
14秒前
15秒前
17秒前
科研通AI5应助sun采纳,获得10
17秒前
shitzu完成签到 ,获得积分10
18秒前
choco发布了新的文献求助10
20秒前
21秒前
李健的小迷弟应助sun采纳,获得10
21秒前
Jzhang应助liyuchen采纳,获得10
21秒前
魏伯安发布了新的文献求助30
21秒前
jjjjjj发布了新的文献求助30
23秒前
24秒前
伯赏诗霜发布了新的文献求助10
24秒前
糟糕的鹏飞完成签到 ,获得积分10
25秒前
25秒前
欢呼凡旋完成签到,获得积分10
26秒前
韩邹光完成签到,获得积分10
28秒前
xg发布了新的文献求助10
28秒前
29秒前
dktrrrr完成签到,获得积分10
29秒前
季生完成签到,获得积分10
32秒前
徐徐完成签到,获得积分10
32秒前
33秒前
33秒前
haku完成签到,获得积分10
35秒前
可爱的函函应助laodie采纳,获得10
37秒前
Singularity应助忆楠采纳,获得10
38秒前
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849