Improvement of data imbalance for digital soil class mapping in Eastern China

班级(哲学) 中国 数字土壤制图 土壤图 环境科学 遥感 地图学 地理 计算机科学 数据挖掘 土壤水分 人工智能 土壤科学 考古
作者
Liping Wang,Xiang Wang,Yahya Kooch,Kaishan Song,Donghui Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108322-108322 被引量:1
标识
DOI:10.1016/j.compag.2023.108322
摘要

A fine-resolution digital soil class map is needed. However, the problem of imbalanced data leads to an inaccurate spatial distribution of the digital soil class map, and the spatial resolution of digital soil class maps at a large scale is low in existing studies. Based on these points, an algorithm of over-sampling and under-sampling was introduced to solve the problem of imbalanced data, and to improve the performance of soil classification model. 316 topsoil samples with eight main soil classes at the great group level were collected in Eastern China. Eight out of twelve prediction variables were determined after the importance evaluation by "Mean Decrease Accuracy" in the random forest (RF) model, including digital elevation model (DEM), enhanced vegetation index (EVI), land surface wetness index (LSWI), land surface temperature (LST), normalized differenced vegetation index (NDVI), and soil texture components. RF model was also applied to complete digital soil class mapping, and the results of treated (over-sampling and under-sampling by randomly increasing or decreasing the number of samples) and untreated data were compared and discussed. Research results indicated that modeling by imbalanced data resulted in uncertain soil classes mapping, with minority classes were lost and with lower accuracies than those of balanced data (overall accuracy = 83.83 %, kappa coefficient = 0.79). After over-sampling and under-sampling treatments, these problems were well solved with an overall accuracy of 96.72 % and a kappa coefficient of 0.93. The accuracy of soil class prediction for minority classes were improved by 12.5 %–54.5 %. Compared to the existing conventional soil map, the new map with a fine resolution of 30 × 30 m is time-effective and more detailed. Validation (point-validation and map-to-map comparison) of the predicted map showed that the output is reliable and can provide a reference for other soil and environmental studies without major difficulties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助不倦采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
丘比特应助abc采纳,获得10
1秒前
曾国强发布了新的文献求助10
2秒前
3秒前
4秒前
乐乐应助挺起我的小胸膛采纳,获得10
4秒前
在水一方应助WSCNOK采纳,获得10
5秒前
清_发布了新的文献求助30
8秒前
Akim应助锋zai采纳,获得10
8秒前
daladala完成签到 ,获得积分10
9秒前
曾国强完成签到,获得积分10
9秒前
10秒前
12秒前
斯文败类应助莉莉是天使采纳,获得10
12秒前
泡泡完成签到 ,获得积分10
13秒前
13秒前
13秒前
周燕燕应助文件撤销了驳回
14秒前
QQ完成签到,获得积分10
15秒前
刘柳完成签到 ,获得积分10
15秒前
hd发布了新的文献求助10
18秒前
18秒前
两只老虎发布了新的文献求助10
18秒前
19秒前
黑羊完成签到,获得积分10
19秒前
19秒前
小鱼歪优完成签到 ,获得积分10
20秒前
小二郎应助相因采纳,获得10
20秒前
21秒前
22秒前
英姑应助WR采纳,获得10
23秒前
科研通AI6应助AUM123采纳,获得10
23秒前
桐桐应助悲凉的新筠采纳,获得10
24秒前
24秒前
Jasper应助tmj采纳,获得10
24秒前
25秒前
26秒前
gz000111完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458397
求助须知:如何正确求助?哪些是违规求助? 4564442
关于积分的说明 14295115
捐赠科研通 4489318
什么是DOI,文献DOI怎么找? 2459006
邀请新用户注册赠送积分活动 1448831
关于科研通互助平台的介绍 1424446