Improvement of data imbalance for digital soil class mapping in Eastern China

班级(哲学) 中国 数字土壤制图 土壤图 环境科学 遥感 地图学 地理 计算机科学 数据挖掘 土壤水分 人工智能 土壤科学 考古
作者
Liping Wang,Xiang Wang,Yahya Kooch,Kaishan Song,Donghui Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:214: 108322-108322 被引量:1
标识
DOI:10.1016/j.compag.2023.108322
摘要

A fine-resolution digital soil class map is needed. However, the problem of imbalanced data leads to an inaccurate spatial distribution of the digital soil class map, and the spatial resolution of digital soil class maps at a large scale is low in existing studies. Based on these points, an algorithm of over-sampling and under-sampling was introduced to solve the problem of imbalanced data, and to improve the performance of soil classification model. 316 topsoil samples with eight main soil classes at the great group level were collected in Eastern China. Eight out of twelve prediction variables were determined after the importance evaluation by "Mean Decrease Accuracy" in the random forest (RF) model, including digital elevation model (DEM), enhanced vegetation index (EVI), land surface wetness index (LSWI), land surface temperature (LST), normalized differenced vegetation index (NDVI), and soil texture components. RF model was also applied to complete digital soil class mapping, and the results of treated (over-sampling and under-sampling by randomly increasing or decreasing the number of samples) and untreated data were compared and discussed. Research results indicated that modeling by imbalanced data resulted in uncertain soil classes mapping, with minority classes were lost and with lower accuracies than those of balanced data (overall accuracy = 83.83 %, kappa coefficient = 0.79). After over-sampling and under-sampling treatments, these problems were well solved with an overall accuracy of 96.72 % and a kappa coefficient of 0.93. The accuracy of soil class prediction for minority classes were improved by 12.5 %–54.5 %. Compared to the existing conventional soil map, the new map with a fine resolution of 30 × 30 m is time-effective and more detailed. Validation (point-validation and map-to-map comparison) of the predicted map showed that the output is reliable and can provide a reference for other soil and environmental studies without major difficulties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的鸡翅完成签到,获得积分10
刚刚
平淡半山完成签到,获得积分10
刚刚
刚刚
无骨鸡爪不长胖完成签到,获得积分10
1秒前
Jasper应助辛勤面包采纳,获得10
1秒前
Ava应助......采纳,获得10
2秒前
2秒前
清秋发布了新的文献求助10
3秒前
深情安青应助NI采纳,获得10
3秒前
YZYXR发布了新的文献求助10
4秒前
李健应助庐山柒柒采纳,获得20
4秒前
smile完成签到,获得积分10
4秒前
pyt完成签到,获得积分10
4秒前
BINGBING1230发布了新的文献求助10
4秒前
维尼发布了新的文献求助10
4秒前
5秒前
坚强的茗茗完成签到,获得积分10
5秒前
科研通AI6应助无私梦松采纳,获得10
5秒前
今后应助达达采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
slwuniA完成签到 ,获得积分10
7秒前
8秒前
8秒前
Pwrry完成签到,获得积分10
8秒前
8秒前
顺心靖雁完成签到,获得积分10
8秒前
Hello应助indigo采纳,获得10
8秒前
悦耳的沛岚发布了新的文献求助200
8秒前
9秒前
zxzxzxzxzxzx完成签到,获得积分10
9秒前
笑点低凌寒完成签到,获得积分10
10秒前
qin发布了新的文献求助10
11秒前
SHI完成签到,获得积分10
11秒前
小小怪发布了新的文献求助10
11秒前
麦克阿宇完成签到,获得积分10
11秒前
Knight发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024658
求助须知:如何正确求助?哪些是违规求助? 4261640
关于积分的说明 13282520
捐赠科研通 4068751
什么是DOI,文献DOI怎么找? 2225424
邀请新用户注册赠送积分活动 1234165
关于科研通互助平台的介绍 1158139