Improvement of data imbalance for digital soil class mapping in Eastern China

班级(哲学) 中国 数字土壤制图 土壤图 环境科学 遥感 地图学 地理 计算机科学 数据挖掘 土壤水分 人工智能 土壤科学 考古
作者
Liping Wang,Xiang Wang,Yahya Kooch,Kaishan Song,Donghui Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108322-108322 被引量:1
标识
DOI:10.1016/j.compag.2023.108322
摘要

A fine-resolution digital soil class map is needed. However, the problem of imbalanced data leads to an inaccurate spatial distribution of the digital soil class map, and the spatial resolution of digital soil class maps at a large scale is low in existing studies. Based on these points, an algorithm of over-sampling and under-sampling was introduced to solve the problem of imbalanced data, and to improve the performance of soil classification model. 316 topsoil samples with eight main soil classes at the great group level were collected in Eastern China. Eight out of twelve prediction variables were determined after the importance evaluation by "Mean Decrease Accuracy" in the random forest (RF) model, including digital elevation model (DEM), enhanced vegetation index (EVI), land surface wetness index (LSWI), land surface temperature (LST), normalized differenced vegetation index (NDVI), and soil texture components. RF model was also applied to complete digital soil class mapping, and the results of treated (over-sampling and under-sampling by randomly increasing or decreasing the number of samples) and untreated data were compared and discussed. Research results indicated that modeling by imbalanced data resulted in uncertain soil classes mapping, with minority classes were lost and with lower accuracies than those of balanced data (overall accuracy = 83.83 %, kappa coefficient = 0.79). After over-sampling and under-sampling treatments, these problems were well solved with an overall accuracy of 96.72 % and a kappa coefficient of 0.93. The accuracy of soil class prediction for minority classes were improved by 12.5 %–54.5 %. Compared to the existing conventional soil map, the new map with a fine resolution of 30 × 30 m is time-effective and more detailed. Validation (point-validation and map-to-map comparison) of the predicted map showed that the output is reliable and can provide a reference for other soil and environmental studies without major difficulties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梧桐的灯完成签到,获得积分10
1秒前
初心发布了新的文献求助10
1秒前
1秒前
2秒前
xiaoxiao发布了新的文献求助20
2秒前
liu发布了新的文献求助10
2秒前
共享精神应助丰都麻辣鸡采纳,获得10
2秒前
大模型应助Anhber采纳,获得10
2秒前
酷波er应助彩色的可兰采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
汉堡包应助cong666采纳,获得10
2秒前
小寒同学完成签到,获得积分10
3秒前
SandaraHuang发布了新的文献求助10
3秒前
wangchiyi完成签到,获得积分10
3秒前
科研通AI2S应助顾北采纳,获得10
3秒前
隐形曼青应助李至安采纳,获得10
3秒前
4秒前
英姑应助Lee采纳,获得10
4秒前
Catsing关注了科研通微信公众号
5秒前
samuel发布了新的文献求助10
6秒前
LILILI完成签到,获得积分10
6秒前
6秒前
yoke完成签到,获得积分10
6秒前
7秒前
贤弟完成签到,获得积分10
7秒前
shuwu发布了新的文献求助10
7秒前
7秒前
7秒前
UPUP完成签到,获得积分10
7秒前
LL完成签到 ,获得积分10
8秒前
Jasper应助yyj采纳,获得10
8秒前
8秒前
阿威完成签到,获得积分10
8秒前
呆萌念云完成签到 ,获得积分10
8秒前
YY关注了科研通微信公众号
9秒前
axl发布了新的文献求助10
9秒前
胡图图啦啦完成签到,获得积分10
9秒前
9秒前
顾矜应助泽泽采纳,获得10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581731
求助须知:如何正确求助?哪些是违规求助? 4665950
关于积分的说明 14759751
捐赠科研通 4607883
什么是DOI,文献DOI怎么找? 2528410
邀请新用户注册赠送积分活动 1497684
关于科研通互助平台的介绍 1466564