Improvement of data imbalance for digital soil class mapping in Eastern China

班级(哲学) 中国 数字土壤制图 土壤图 环境科学 遥感 地图学 地理 计算机科学 数据挖掘 土壤水分 人工智能 土壤科学 考古
作者
Liping Wang,Xiang Wang,Yahya Kooch,Kaishan Song,Donghui Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108322-108322 被引量:1
标识
DOI:10.1016/j.compag.2023.108322
摘要

A fine-resolution digital soil class map is needed. However, the problem of imbalanced data leads to an inaccurate spatial distribution of the digital soil class map, and the spatial resolution of digital soil class maps at a large scale is low in existing studies. Based on these points, an algorithm of over-sampling and under-sampling was introduced to solve the problem of imbalanced data, and to improve the performance of soil classification model. 316 topsoil samples with eight main soil classes at the great group level were collected in Eastern China. Eight out of twelve prediction variables were determined after the importance evaluation by "Mean Decrease Accuracy" in the random forest (RF) model, including digital elevation model (DEM), enhanced vegetation index (EVI), land surface wetness index (LSWI), land surface temperature (LST), normalized differenced vegetation index (NDVI), and soil texture components. RF model was also applied to complete digital soil class mapping, and the results of treated (over-sampling and under-sampling by randomly increasing or decreasing the number of samples) and untreated data were compared and discussed. Research results indicated that modeling by imbalanced data resulted in uncertain soil classes mapping, with minority classes were lost and with lower accuracies than those of balanced data (overall accuracy = 83.83 %, kappa coefficient = 0.79). After over-sampling and under-sampling treatments, these problems were well solved with an overall accuracy of 96.72 % and a kappa coefficient of 0.93. The accuracy of soil class prediction for minority classes were improved by 12.5 %–54.5 %. Compared to the existing conventional soil map, the new map with a fine resolution of 30 × 30 m is time-effective and more detailed. Validation (point-validation and map-to-map comparison) of the predicted map showed that the output is reliable and can provide a reference for other soil and environmental studies without major difficulties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8RyzBZ发布了新的文献求助10
刚刚
周林夕16888完成签到,获得积分10
刚刚
Mingyue123完成签到,获得积分10
刚刚
wwwwpy完成签到,获得积分10
1秒前
认真搞科研啦完成签到,获得积分10
1秒前
XUYU发布了新的文献求助10
3秒前
干净绮山发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
litianyuan发布了新的文献求助20
7秒前
Yh完成签到,获得积分10
7秒前
7秒前
dyd发布了新的文献求助10
8秒前
任性鞋垫发布了新的文献求助10
9秒前
科研通AI6应助干净绮山采纳,获得10
9秒前
10秒前
doudoumiao发布了新的文献求助20
10秒前
cc完成签到,获得积分20
10秒前
nihao发布了新的文献求助10
12秒前
qq完成签到 ,获得积分10
12秒前
gzt完成签到 ,获得积分10
12秒前
大个应助惜海采纳,获得10
13秒前
在水一方应助asdfg123采纳,获得10
13秒前
情怀应助Clare采纳,获得10
13秒前
王静静发布了新的文献求助10
14秒前
shuang发布了新的文献求助10
15秒前
小昼发布了新的文献求助10
16秒前
16秒前
猪猪hero发布了新的文献求助10
16秒前
17秒前
科研通AI2S应助xxxllllll采纳,获得10
18秒前
BowieHuang应助qxy采纳,获得20
18秒前
雾栖亓完成签到,获得积分10
19秒前
善学以致用应助Jasen采纳,获得10
19秒前
19秒前
20秒前
20秒前
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781