Improvement of data imbalance for digital soil class mapping in Eastern China

班级(哲学) 中国 数字土壤制图 土壤图 环境科学 遥感 地图学 地理 计算机科学 数据挖掘 土壤水分 人工智能 土壤科学 考古
作者
Liping Wang,Xiang Wang,Yahya Kooch,Kaishan Song,Donghui Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108322-108322 被引量:1
标识
DOI:10.1016/j.compag.2023.108322
摘要

A fine-resolution digital soil class map is needed. However, the problem of imbalanced data leads to an inaccurate spatial distribution of the digital soil class map, and the spatial resolution of digital soil class maps at a large scale is low in existing studies. Based on these points, an algorithm of over-sampling and under-sampling was introduced to solve the problem of imbalanced data, and to improve the performance of soil classification model. 316 topsoil samples with eight main soil classes at the great group level were collected in Eastern China. Eight out of twelve prediction variables were determined after the importance evaluation by "Mean Decrease Accuracy" in the random forest (RF) model, including digital elevation model (DEM), enhanced vegetation index (EVI), land surface wetness index (LSWI), land surface temperature (LST), normalized differenced vegetation index (NDVI), and soil texture components. RF model was also applied to complete digital soil class mapping, and the results of treated (over-sampling and under-sampling by randomly increasing or decreasing the number of samples) and untreated data were compared and discussed. Research results indicated that modeling by imbalanced data resulted in uncertain soil classes mapping, with minority classes were lost and with lower accuracies than those of balanced data (overall accuracy = 83.83 %, kappa coefficient = 0.79). After over-sampling and under-sampling treatments, these problems were well solved with an overall accuracy of 96.72 % and a kappa coefficient of 0.93. The accuracy of soil class prediction for minority classes were improved by 12.5 %–54.5 %. Compared to the existing conventional soil map, the new map with a fine resolution of 30 × 30 m is time-effective and more detailed. Validation (point-validation and map-to-map comparison) of the predicted map showed that the output is reliable and can provide a reference for other soil and environmental studies without major difficulties.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默棉花糖完成签到,获得积分10
刚刚
鹏程应助拼搏君浩采纳,获得10
1秒前
2秒前
老马哥完成签到 ,获得积分0
2秒前
明月念斯人完成签到 ,获得积分10
4秒前
4秒前
淡然冬灵应助锅铲采纳,获得20
5秒前
Rabbit完成签到 ,获得积分10
7秒前
7秒前
现代书雪发布了新的文献求助10
8秒前
宁霸完成签到,获得积分0
9秒前
deniroming完成签到,获得积分0
13秒前
Jasper应助ZR666888采纳,获得10
14秒前
一行完成签到,获得积分10
14秒前
壮观小懒虫完成签到 ,获得积分10
15秒前
勤恳洙应助现代书雪采纳,获得30
19秒前
25秒前
嘿嘿应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
桐桐应助刘慧鑫采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
26秒前
现代书雪完成签到,获得积分20
28秒前
29秒前
跳跃小伙完成签到 ,获得积分10
30秒前
30秒前
123345发布了新的文献求助10
31秒前
32秒前
zyyao发布了新的文献求助20
32秒前
流光发布了新的文献求助10
34秒前
Owen应助2022H采纳,获得20
34秒前
zxer发布了新的文献求助10
35秒前
乐观荣轩完成签到,获得积分10
37秒前
刘慧鑫发布了新的文献求助10
38秒前
香蕉觅云应助讨厌乐跑采纳,获得10
39秒前
2022H完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346