BCAF-3D: Bilateral Content Awareness Fusion for cross-modal 3D object detection

点云 计算机科学 人工智能 激光雷达 目标检测 计算机视觉 特征(语言学) 公制(单位) 对象(语法) 情态动词 传感器融合 模态(人机交互) 模式识别(心理学) 遥感 地理 工程类 语言学 哲学 运营管理 化学 高分子化学
作者
Chen Mu,Pengfei Liu,Huaici Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:279: 110952-110952 被引量:2
标识
DOI:10.1016/j.knosys.2023.110952
摘要

As two major data modalities in autonomous driving, LiDAR point clouds and RGB images include rich geometric clues and semantic features. Compared with using a single data modality, fusing two data modalities can provide complementary information for the 3D object detection task. However, some prevalent cross-modal methods (Vora et al., 2020; Huang et al., 2020; Sindagi et al., 2019) cannot effectively obtain favorable information, and only adopt a unilateral fusion mechanism. In this paper, we propose a novel fusion strategy named Bilateral Content Awareness Fusion (BCAF) to address these issues. Specifically, BCAF adopts a two-stream structure consisting of a LiDAR Content Awareness (LCA) branch and an Image Content Awareness (ICA) branch along with a Soft Fusion (SF) module. First, the LCA and ICA are used to enhance instance-relevant clues. Then, with two awareness features given by the LCA and ICA branches, the aggregation features can be generated to choose favorable image features and LiDAR features. Finally, the SF module fuses the bilateral favorable features and outputs the cross-modal feature. Experiments of our method are conducted on the KITTI dataset, including 3D object detection evaluation and bird’s eye view evaluation. Compared with the previous art method, our approach achieves significant improvements. Especially for the metric of mean Average Precision (mAP) on the Car category, our approach obtains 0.5 and 0.62 gains for the tasks of 3D object detection and bird’s eye view, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助英俊罡采纳,获得10
3秒前
二月关注了科研通微信公众号
4秒前
6秒前
6秒前
6秒前
投奔怒海完成签到,获得积分10
7秒前
无语的电源完成签到,获得积分10
8秒前
桐桐应助Analchem采纳,获得10
8秒前
10秒前
EKKOO完成签到,获得积分20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
勤劳冰烟应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得50
11秒前
臻灏发布了新的文献求助10
11秒前
12秒前
现代雁桃发布了新的文献求助10
12秒前
Yuanyuan发布了新的文献求助10
13秒前
13秒前
shinn发布了新的文献求助10
15秒前
朱巴子发布了新的文献求助10
15秒前
17秒前
18秒前
Analchem发布了新的文献求助10
18秒前
19秒前
虎头怪发布了新的文献求助10
20秒前
dinghaifeng应助momo采纳,获得10
21秒前
可爱的函函应助臻灏采纳,获得10
21秒前
23秒前
今天学习了嘛完成签到,获得积分20
24秒前
zimuki发布了新的文献求助10
24秒前
24秒前
26秒前
Analchem完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303