亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CBDT-Oglyc: Prediction of O-glycosylation sites using ChiMIC-based balanced decision table and feature selection

分类器(UML) 人工智能 计算机科学 特征选择 机器学习 模式识别(心理学) 假阳性悖论 糖基化 数据挖掘 生物 生物化学
作者
Ying Zeng,Zheming Yuan,Yuan Chen,Yan Hu
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:21 (05)
标识
DOI:10.1142/s0219720023500245
摘要

O-glycosylation (Oglyc) plays an important role in various biological processes. The key to understanding the mechanisms of Oglyc is identifying the corresponding glycosylation sites. Two critical steps, feature selection and classifier design, greatly affect the accuracy of computational methods for predicting Oglyc sites. Based on an efficient feature selection algorithm and a classifier capable of handling imbalanced datasets, a new computational method, ChiMIC-based balanced decision table O-glycosylation (CBDT-Oglyc), is proposed. ChiMIC-based balanced decision table for O-glycosylation (CBDT-Oglyc), is proposed to predict Oglyc sites in proteins. Sequence characterization is performed by combining amino acid composition (AAC), undirected composition of [Formula: see text]-spaced amino acid pairs (undirected-CKSAAP) and pseudo-position-specific scoring matrix (PsePSSM). Chi-MIC-share algorithm is used for feature selection, which simplifies the model and improves predictive accuracy. For imbalanced classification, a backtracking method based on local chi-square test is designed, and then cost-sensitive learning is incorporated to construct a novel classifier named ChiMIC-based balanced decision table (CBDT). Based on a 1:49 (positives:negatives) training set, the CBDT classifier achieves significantly better prediction performance than traditional classifiers. Moreover, the independent test results on separate human and mouse glycoproteins show that CBDT-Oglyc outperforms previous methods in global accuracy. CBDT-Oglyc shows great promise in predicting Oglyc sites and is expected to facilitate further experimental studies on protein glycosylation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大麦完成签到 ,获得积分10
24秒前
Kevin完成签到 ,获得积分10
25秒前
浮游应助耶耶粘豆包采纳,获得10
30秒前
39秒前
5k全完成签到 ,获得积分10
39秒前
49秒前
50秒前
52秒前
HaCat应助科研通管家采纳,获得10
57秒前
HaCat应助科研通管家采纳,获得10
57秒前
嘻嘻哈哈应助科研通管家采纳,获得10
57秒前
HaCat应助科研通管家采纳,获得10
57秒前
HaCat应助科研通管家采纳,获得10
57秒前
可爱丹彤发布了新的文献求助10
58秒前
1分钟前
1分钟前
1分钟前
友好寻真发布了新的文献求助20
1分钟前
yuxia发布了新的文献求助10
1分钟前
默默襄发布了新的文献求助10
1分钟前
1分钟前
as发布了新的文献求助10
1分钟前
Qwer完成签到 ,获得积分10
1分钟前
隐形曼青应助默默襄采纳,获得10
1分钟前
丘比特应助yuxia采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
就是梦而已完成签到,获得积分10
2分钟前
窝窝窝书完成签到,获得积分10
2分钟前
2分钟前
仁爱的狗发布了新的文献求助10
2分钟前
2分钟前
仁爱的狗完成签到,获得积分10
2分钟前
housii完成签到,获得积分10
2分钟前
2分钟前
housii发布了新的文献求助10
2分钟前
勤奋丹萱完成签到 ,获得积分10
2分钟前
Mic应助housii采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302133
求助须知:如何正确求助?哪些是违规求助? 4449379
关于积分的说明 13848275
捐赠科研通 4335535
什么是DOI,文献DOI怎么找? 2380395
邀请新用户注册赠送积分活动 1375402
关于科研通互助平台的介绍 1341557