CBDT-Oglyc: Prediction of O-glycosylation sites using ChiMIC-based balanced decision table and feature selection

分类器(UML) 人工智能 计算机科学 特征选择 机器学习 模式识别(心理学) 假阳性悖论 糖基化 数据挖掘 生物 生物化学
作者
Ying Zeng,Zheming Yuan,Yuan Chen,Yan Hu
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:21 (05)
标识
DOI:10.1142/s0219720023500245
摘要

O-glycosylation (Oglyc) plays an important role in various biological processes. The key to understanding the mechanisms of Oglyc is identifying the corresponding glycosylation sites. Two critical steps, feature selection and classifier design, greatly affect the accuracy of computational methods for predicting Oglyc sites. Based on an efficient feature selection algorithm and a classifier capable of handling imbalanced datasets, a new computational method, ChiMIC-based balanced decision table O-glycosylation (CBDT-Oglyc), is proposed. ChiMIC-based balanced decision table for O-glycosylation (CBDT-Oglyc), is proposed to predict Oglyc sites in proteins. Sequence characterization is performed by combining amino acid composition (AAC), undirected composition of [Formula: see text]-spaced amino acid pairs (undirected-CKSAAP) and pseudo-position-specific scoring matrix (PsePSSM). Chi-MIC-share algorithm is used for feature selection, which simplifies the model and improves predictive accuracy. For imbalanced classification, a backtracking method based on local chi-square test is designed, and then cost-sensitive learning is incorporated to construct a novel classifier named ChiMIC-based balanced decision table (CBDT). Based on a 1:49 (positives:negatives) training set, the CBDT classifier achieves significantly better prediction performance than traditional classifiers. Moreover, the independent test results on separate human and mouse glycoproteins show that CBDT-Oglyc outperforms previous methods in global accuracy. CBDT-Oglyc shows great promise in predicting Oglyc sites and is expected to facilitate further experimental studies on protein glycosylation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Baneyhua采纳,获得10
刚刚
刚刚
124cndhaP发布了新的文献求助10
刚刚
李爱国应助present采纳,获得10
1秒前
稳重飞飞完成签到,获得积分10
1秒前
1秒前
诚心盼海发布了新的文献求助10
2秒前
2秒前
Galato发布了新的文献求助10
2秒前
2秒前
XYH发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
淡淡的香完成签到 ,获得积分20
3秒前
3秒前
xahay发布了新的文献求助10
4秒前
liang19640908完成签到 ,获得积分10
4秒前
今后应助chrysophoron采纳,获得10
5秒前
科研GO应助七月流火采纳,获得10
5秒前
NexusExplorer应助grandtough采纳,获得10
5秒前
wisdom完成签到,获得积分20
6秒前
踏实的南琴完成签到 ,获得积分10
8秒前
8秒前
锡昱完成签到,获得积分10
8秒前
8秒前
北方有相思完成签到 ,获得积分20
9秒前
kkscanl完成签到 ,获得积分10
9秒前
阿南发布了新的文献求助10
10秒前
小樱发布了新的文献求助10
10秒前
欢欢完成签到,获得积分10
10秒前
11秒前
XYH完成签到,获得积分10
11秒前
小蘑菇应助毛毛采纳,获得10
11秒前
tovfix完成签到,获得积分10
11秒前
11秒前
12秒前
尔雅完成签到 ,获得积分10
12秒前
12秒前
李爱国应助迅速的丑采纳,获得10
12秒前
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406