FPDDet: An Efficient Rotated SAR Ship Detector Based on Simple Polar Encoding and Decoding

计算机科学 最小边界框 合成孔径雷达 探测器 跳跃式监视 算法 不连续性分类 极坐标系 人工智能 计算机视觉 模式识别(心理学) 数学 图像(数学) 几何学 电信 数学分析
作者
Moran Ju,Buniu Niu,Jingbo Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3324355
摘要

In the task of Synthetic Aperture Radar (SAR) ship detection, ship targets exhibit arbitrary orientations and are closely aligned. In recent years, oriented bounding box (OBB) based detectors have gained attention as a solution to the significant overlap issue present in horizontal bounding box (HBB) based detectors. Due to the boundary discontinuity issue with current mainstream OBB methods, detectors utilizing the polar coordinate system to define OBB have been introduced. However, currently available methods are usually complicated to encode and decode, and do not take into account the complex background of SAR images. This results in the complexity of neural networks and inaccurate predictions. In this paper, we propose a novel five-parameter polar coordinate dense regression detector (FPDDet) that only uses a centroid, a mapped polar diameter, and two polar angles to deal with the overlap problem of HBB and the boundary discontinuity problem of OBB. Meanwhile, we introduce a dense regression strategy based on covariance-adaptive rotated Gaussian heatmap to dynamically assign ship target samples in response to large-scale variation of ship targets in SAR images, and we suggest a dense regression heatmap loss function to better match our dense regression strategy. In addition, we design a feature enhancement module to enhance the target features while weakening the background interference, aiming to cope with the severe noise pollution of SAR images. Experimental results show that our FPDDet achieves the state-of-the-art performance on Rotating SAR Ship Detection Dataset (RSSDD) and Rotated Ship Detection Dataset (RSDD). Compared to previous best results, mAP has been improved by 1.2% and 1.71%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助sonokoH采纳,获得10
5秒前
不配.应助shaco采纳,获得10
9秒前
9秒前
20777KKK发布了新的文献求助200
14秒前
小四火发布了新的文献求助10
14秒前
金22完成签到,获得积分10
15秒前
上官若男应助黙宇循光采纳,获得10
17秒前
19秒前
梅莉达完成签到,获得积分10
21秒前
21秒前
科目三应助笨笨筮采纳,获得10
23秒前
传奇3应助奋斗天德采纳,获得10
23秒前
LIUBENBEN发布了新的文献求助10
23秒前
24秒前
可爱的函函应助tzq采纳,获得10
25秒前
黙宇循光完成签到,获得积分10
25秒前
Layli发布了新的文献求助10
26秒前
黙宇循光发布了新的文献求助10
29秒前
富贵儿完成签到 ,获得积分10
29秒前
30秒前
31秒前
LIUBENBEN完成签到,获得积分10
31秒前
31秒前
32秒前
33秒前
33秒前
柚子发布了新的文献求助10
34秒前
笨笨筮发布了新的文献求助10
35秒前
阴阳怪气平宝贝完成签到 ,获得积分10
35秒前
tzq发布了新的文献求助10
37秒前
39秒前
情怀应助科研柠檬精酸酸采纳,获得10
41秒前
阴阳怪气平宝贝关注了科研通微信公众号
42秒前
慕苡完成签到,获得积分10
42秒前
白衣卿相发布了新的文献求助10
44秒前
领导范儿应助柚子采纳,获得10
44秒前
xiaoguan发布了新的文献求助10
44秒前
咕噜咕噜发布了新的文献求助10
45秒前
小蘑菇应助动听山芙采纳,获得10
45秒前
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870