🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Potato Leaf Disease Segmentation Method Based on Improved UNet

分割 计算机科学 过程(计算) 一般化 鉴定(生物学) 人工智能 模式识别(心理学) 数学 生物 植物 操作系统 数学分析
作者
Jun Fu,Yichen Zhao,Gang Wu
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (20): 11179-11179 被引量:6
标识
DOI:10.3390/app132011179
摘要

The precise control of potato diseases is an urgent demand in smart agriculture, with one of the key aspects being the accurate identification and segmentation of potato leaf diseases. Some disease spots on potato leaves are relatively small, and to address issues such as information loss and low segmentation accuracy in the process of potato leaf disease image segmentation, a novel approach based on an improved UNet network model is proposed. Firstly, the incorporation of ResNet50 as the backbone network is introduced to deepen the network structure, effectively addressing problems like gradient vanishing and degradation. Secondly, the unique characteristics of the UNet network are fully utilized, using UNet as the decoder to ingeniously integrate the characteristics of potatoes with the network. Finally, to better enable the network to learn disease spot features, the SE (squeeze and excitation) attention mechanism is introduced on top of ResNet50, further optimizing the network structure. This design allows the network to selectively emphasize useful information features and suppress irrelevant ones during the learning process, significantly enhancing the accuracy of potato disease segmentation and identification. The experimental results demonstrate that compared with the traditional UNet algorithm, the improved RS-UNet network model achieves values of 79.8% and 88.86% for the MIoU and Dice metrics, respectively, which represent improvements of 8.96% and 6.33% over UNet. These results provide strong evidence for the outstanding performance and generalization ability of the RS-UNet model in potato leaf disease spot segmentation, as well as its practical application value in the task of potato leaf disease segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Zyou采纳,获得10
3秒前
3秒前
Lucas应助金金采纳,获得10
4秒前
yy完成签到,获得积分10
4秒前
在水一方应助min采纳,获得10
4秒前
7秒前
旗禾完成签到 ,获得积分10
11秒前
12秒前
LUCKY完成签到 ,获得积分20
12秒前
疯狂的囧完成签到 ,获得积分10
12秒前
汉堡包应助wanshuixiaowu173采纳,获得30
13秒前
疯狂的冬瓜完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
李爱国应助朴素刺猬采纳,获得10
16秒前
16秒前
爱上人家四月完成签到,获得积分10
17秒前
金金完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
做科研怎么不会疯呢完成签到,获得积分20
20秒前
20秒前
21秒前
金金发布了新的文献求助10
21秒前
22秒前
22秒前
shaco发布了新的文献求助10
24秒前
memedaaaah发布了新的文献求助10
24秒前
Nnn发布了新的文献求助10
25秒前
斑马发布了新的文献求助10
25秒前
27秒前
Ava应助asdasdasddad采纳,获得10
28秒前
29秒前
32秒前
33秒前
34秒前
35秒前
Yancent发布了新的文献求助10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
中国文摘CHINA DIGEST(1946-1950) 1-3(英文) 精装 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3605831
求助须知:如何正确求助?哪些是违规求助? 3173580
关于积分的说明 9579729
捐赠科研通 2879474
什么是DOI,文献DOI怎么找? 1581789
邀请新用户注册赠送积分活动 743767
科研通“疑难数据库(出版商)”最低求助积分说明 726219