A stochastic maximum principle for partially observed general mean-field control problems with only weak solution

数学 李普希茨连续性 独特性 可微函数 最大值原理 数学分析 凸性 随机微分方程 随机控制 度量(数据仓库) 应用数学 最优控制 数学优化 数据库 计算机科学 金融经济学 经济
作者
Juan Li,Hao Liang,Chao Mi
出处
期刊:Stochastic Processes and their Applications [Elsevier]
卷期号:165: 397-439
标识
DOI:10.1016/j.spa.2023.08.005
摘要

In this paper we focus on a general type of mean-field stochastic control problem with partial observation, in which the coefficients depend in a non-linear way not only on the state process Xt and its control ut but also on the conditional law E[Xt|FtY] of the state process conditioned with respect to the past of observation process Y. We first deduce the well-posedness of the controlled system by showing weak existence and uniqueness in law. Neither supposing convexity of the control state space nor differentiability of the coefficients with respect to the control variable, we study Peng's stochastic maximum principle for our control problem. The novelty and the difficulty of our work stem from the fact that, given an admissible control u, the solution of the associated control problem is only a weak one. This has as consequence that also the probability measure in the solution Pu=LTuQ depends on u and has a density LTu with respect to a reference measure Q. So characterizing an optimal control leads to the differentiation of non-linear functions f(Pu∘{EPu[Xt|FtY]}−1) with respect to (LTu,Xt). This has as consequence for the study of Peng's maximum principle that we get a new type of first and second order variational equations and adjoint backward stochastic differential equations, all with new mean-field terms and with coefficients which are not Lipschitz. For their estimates and for those for the Taylor expansion new techniques have had to be introduced and rather technical results have had to be established. The necessary optimality condition we get extends Peng's one with new, non-trivial terms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助777采纳,获得10
1秒前
ovoiii完成签到,获得积分10
1秒前
黄则已发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
爆米花应助㊣㊣采纳,获得10
3秒前
往日阴雨发布了新的文献求助10
4秒前
4秒前
Atopos发布了新的文献求助10
4秒前
kmelo完成签到,获得积分10
4秒前
LL发布了新的文献求助10
5秒前
科研通AI6应助於访琴采纳,获得10
5秒前
5秒前
zzzzzzzzzzzz发布了新的文献求助10
6秒前
6秒前
typhoon完成签到,获得积分10
7秒前
7秒前
田様应助xiaoyu采纳,获得10
7秒前
传奇3应助小白狮666采纳,获得10
8秒前
小Z发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助积极的老鼠采纳,获得10
9秒前
心尘发布了新的文献求助10
10秒前
明越发布了新的文献求助30
11秒前
CNS完成签到,获得积分10
12秒前
13秒前
唠叨的雨莲关注了科研通微信公众号
14秒前
15秒前
16秒前
槿一完成签到 ,获得积分10
17秒前
crazy梁完成签到,获得积分10
18秒前
祺玄完成签到,获得积分10
18秒前
黄则已发布了新的文献求助10
19秒前
19秒前
华仔应助专注的水壶采纳,获得10
19秒前
大方的蓝发布了新的文献求助10
19秒前
健壮涵柳发布了新的文献求助10
20秒前
阿海的发布了新的文献求助10
20秒前
小二郎应助拾陆采纳,获得10
21秒前
23秒前
冷酷外绣发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537346
求助须知:如何正确求助?哪些是违规求助? 4624899
关于积分的说明 14593747
捐赠科研通 4565427
什么是DOI,文献DOI怎么找? 2502354
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452191