A stochastic maximum principle for partially observed general mean-field control problems with only weak solution

数学 李普希茨连续性 独特性 可微函数 最大值原理 数学分析 凸性 随机微分方程 随机控制 度量(数据仓库) 应用数学 最优控制 数学优化 数据库 计算机科学 金融经济学 经济
作者
Juan Li,Hao Liang,Chao Mi
出处
期刊:Stochastic Processes and their Applications [Elsevier]
卷期号:165: 397-439
标识
DOI:10.1016/j.spa.2023.08.005
摘要

In this paper we focus on a general type of mean-field stochastic control problem with partial observation, in which the coefficients depend in a non-linear way not only on the state process Xt and its control ut but also on the conditional law E[Xt|FtY] of the state process conditioned with respect to the past of observation process Y. We first deduce the well-posedness of the controlled system by showing weak existence and uniqueness in law. Neither supposing convexity of the control state space nor differentiability of the coefficients with respect to the control variable, we study Peng's stochastic maximum principle for our control problem. The novelty and the difficulty of our work stem from the fact that, given an admissible control u, the solution of the associated control problem is only a weak one. This has as consequence that also the probability measure in the solution Pu=LTuQ depends on u and has a density LTu with respect to a reference measure Q. So characterizing an optimal control leads to the differentiation of non-linear functions f(Pu∘{EPu[Xt|FtY]}−1) with respect to (LTu,Xt). This has as consequence for the study of Peng's maximum principle that we get a new type of first and second order variational equations and adjoint backward stochastic differential equations, all with new mean-field terms and with coefficients which are not Lipschitz. For their estimates and for those for the Taylor expansion new techniques have had to be introduced and rather technical results have had to be established. The necessary optimality condition we get extends Peng's one with new, non-trivial terms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助老实友蕊采纳,获得10
刚刚
刚刚
Drake101发布了新的文献求助10
刚刚
刚刚
1秒前
NexusExplorer应助碧蓝贞采纳,获得10
1秒前
科研通AI2S应助分歧者咋咋采纳,获得10
1秒前
无欲无求完成签到 ,获得积分20
1秒前
1秒前
获奖感言完成签到,获得积分10
2秒前
2秒前
慕青应助狐尔莫采纳,获得10
2秒前
2秒前
桶桶完成签到,获得积分20
2秒前
英俊的铭应助快乐小子采纳,获得10
2秒前
Stella应助Dali采纳,获得10
3秒前
忧心的洙完成签到,获得积分10
3秒前
吴宵完成签到,获得积分10
3秒前
hh发布了新的文献求助10
3秒前
若花若草完成签到,获得积分10
3秒前
赘婿应助Nafis采纳,获得10
3秒前
4秒前
泡泡发布了新的文献求助10
4秒前
柏不斜完成签到,获得积分10
5秒前
慧慧完成签到,获得积分10
5秒前
Dali应助ceeray23采纳,获得20
5秒前
qq完成签到,获得积分10
5秒前
所所应助小汪快跑采纳,获得10
5秒前
股价发布了新的文献求助10
5秒前
天天快乐应助er采纳,获得10
6秒前
灰太狼养的小灰灰完成签到,获得积分10
6秒前
大方忆秋完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
一颗小泡菜完成签到,获得积分10
6秒前
6秒前
王博士完成签到,获得积分10
6秒前
才露尖尖角完成签到,获得积分10
7秒前
7秒前
斯文败类应助cherish'采纳,获得10
7秒前
lll完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997