亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A stochastic maximum principle for partially observed general mean-field control problems with only weak solution

数学 李普希茨连续性 独特性 可微函数 最大值原理 数学分析 凸性 随机微分方程 随机控制 度量(数据仓库) 应用数学 最优控制 数学优化 经济 金融经济学 数据库 计算机科学
作者
Juan Li,Hao Liang,Chao Mi
出处
期刊:Stochastic Processes and their Applications [Elsevier]
卷期号:165: 397-439
标识
DOI:10.1016/j.spa.2023.08.005
摘要

In this paper we focus on a general type of mean-field stochastic control problem with partial observation, in which the coefficients depend in a non-linear way not only on the state process Xt and its control ut but also on the conditional law E[Xt|FtY] of the state process conditioned with respect to the past of observation process Y. We first deduce the well-posedness of the controlled system by showing weak existence and uniqueness in law. Neither supposing convexity of the control state space nor differentiability of the coefficients with respect to the control variable, we study Peng's stochastic maximum principle for our control problem. The novelty and the difficulty of our work stem from the fact that, given an admissible control u, the solution of the associated control problem is only a weak one. This has as consequence that also the probability measure in the solution Pu=LTuQ depends on u and has a density LTu with respect to a reference measure Q. So characterizing an optimal control leads to the differentiation of non-linear functions f(Pu∘{EPu[Xt|FtY]}−1) with respect to (LTu,Xt). This has as consequence for the study of Peng's maximum principle that we get a new type of first and second order variational equations and adjoint backward stochastic differential equations, all with new mean-field terms and with coefficients which are not Lipschitz. For their estimates and for those for the Taylor expansion new techniques have had to be introduced and rather technical results have had to be established. The necessary optimality condition we get extends Peng's one with new, non-trivial terms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助总是很简单采纳,获得10
4秒前
18秒前
23秒前
shhoing应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
gexzygg应助科研通管家采纳,获得10
33秒前
shhoing应助科研通管家采纳,获得10
33秒前
李健应助总是很简单采纳,获得10
52秒前
草木完成签到 ,获得积分20
55秒前
asd1576562308完成签到 ,获得积分10
1分钟前
BowieHuang应助达不溜搽采纳,获得10
1分钟前
绿野仙踪完成签到 ,获得积分10
1分钟前
1分钟前
弃笔从文发布了新的文献求助10
1分钟前
弃笔从文完成签到,获得积分20
1分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
天天快乐应助调皮千兰采纳,获得10
2分钟前
何为完成签到 ,获得积分0
2分钟前
2分钟前
调皮千兰发布了新的文献求助10
3分钟前
3分钟前
jinghong完成签到 ,获得积分10
3分钟前
彭于晏应助爱蹦跶的废物采纳,获得10
3分钟前
sunfield2014发布了新的文献求助10
3分钟前
3分钟前
BowieHuang应助调皮千兰采纳,获得10
3分钟前
3分钟前
完美世界应助雨晨采纳,获得10
3分钟前
3分钟前
Owen应助季刘杰采纳,获得10
4分钟前
4分钟前
季刘杰发布了新的文献求助10
4分钟前
ding应助调皮千兰采纳,获得10
4分钟前
小马甲应助渡己。采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561453
求助须知:如何正确求助?哪些是违规求助? 4646560
关于积分的说明 14678633
捐赠科研通 4587843
什么是DOI,文献DOI怎么找? 2517229
邀请新用户注册赠送积分活动 1490505
关于科研通互助平台的介绍 1461454