Printed Circuit Board Defect Image Recognition Based on the Multimodel Fusion Algorithm

灵敏度(控制系统) 人工智能 计算机科学 融合 卷积神经网络 工作量 网络模型 人工神经网络 模式识别(心理学) 重新使用 图像融合 特征(语言学) 算法 图像(数学) 计算机视觉 工程类 电子工程 哲学 语言学 废物管理 操作系统
作者
Jiantao Zhang,Zhengfang Chang,Haida Xu,Dong Qu,Xinyu Shi
出处
期刊:Journal of Electronic Packaging [ASM International]
卷期号:146 (2)
标识
DOI:10.1115/1.4064098
摘要

Abstract Printed Circuit Board (PCB) is one of the most important components of electronic products. But the traditional defect detection methods are gradually difficult to meet the requirements of PCB defect detection. The research on PCB defect recognition method based on convolutional neural network is the current trend. The PCB defect image recognition based on DenseNet169 network model is studied in this paper. In order to reduce the omission of PCB defects in actual detection, it is necessary to further improve the sensitivity of the model. Therefore, a classification model based on the multimodel fusion of the DenseNet169 model and the ResNet50 model is proposed. At the same time, the network structure after multimodel fusion is improved. The improved multimodel fusion model Mix-Fusion enables the network to not only retain the recognition accuracy of the ResNet50 model for NG defects and small defect images but also improve the overall recognition accuracy through the feature reuse and bypass settings of the DenseNet169 model. The experimental results show that when the threshold is 0.5, the sensitivity of the improved multimodel fusion network can reach 99.2%, and the specificity is 99.5%. The sensitivity of Mix-Fusion is 1.2% higher than that of DenseNet169. High sensitivity means fewer missed NG images, and high specificity means less workload for employees. The improved model improves sensitivity and maintains high specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
12秒前
Likz完成签到,获得积分10
12秒前
不安的秋白完成签到,获得积分10
14秒前
清新的剑心完成签到 ,获得积分10
15秒前
Yiling完成签到,获得积分10
15秒前
17秒前
氕氘氚完成签到 ,获得积分10
21秒前
Hello应助不安的秋白采纳,获得10
23秒前
糯米团的完成签到 ,获得积分10
24秒前
神勇从波完成签到 ,获得积分10
26秒前
yellow完成签到 ,获得积分10
28秒前
虚幻元风完成签到 ,获得积分10
31秒前
xybjt完成签到 ,获得积分10
34秒前
巴达天使完成签到,获得积分10
40秒前
江三村完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
58秒前
CyberHamster完成签到,获得积分10
1分钟前
xiaohong完成签到,获得积分10
1分钟前
朱比特完成签到,获得积分10
1分钟前
1分钟前
zmuzhang2019发布了新的文献求助10
1分钟前
onestepcloser完成签到 ,获得积分0
1分钟前
zoe完成签到 ,获得积分10
1分钟前
发嗲的慕蕊完成签到 ,获得积分10
1分钟前
Linson完成签到,获得积分10
1分钟前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
2分钟前
zzzz完成签到,获得积分20
2分钟前
GEZIKU完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022