Printed Circuit Board Defect Image Recognition Based on the Multimodel Fusion Algorithm

灵敏度(控制系统) 人工智能 计算机科学 融合 卷积神经网络 工作量 网络模型 人工神经网络 模式识别(心理学) 重新使用 图像融合 特征(语言学) 算法 图像(数学) 计算机视觉 工程类 电子工程 语言学 操作系统 哲学 废物管理
作者
Jiantao Zhang,Zhengfang Chang,Haida Xu,Dong Qu,Xinyu Shi
出处
期刊:Journal of Electronic Packaging [ASME International]
卷期号:146 (2)
标识
DOI:10.1115/1.4064098
摘要

Abstract Printed Circuit Board (PCB) is one of the most important components of electronic products. But the traditional defect detection methods are gradually difficult to meet the requirements of PCB defect detection. The research on PCB defect recognition method based on convolutional neural network is the current trend. The PCB defect image recognition based on DenseNet169 network model is studied in this paper. In order to reduce the omission of PCB defects in actual detection, it is necessary to further improve the sensitivity of the model. Therefore, a classification model based on the multimodel fusion of the DenseNet169 model and the ResNet50 model is proposed. At the same time, the network structure after multimodel fusion is improved. The improved multimodel fusion model Mix-Fusion enables the network to not only retain the recognition accuracy of the ResNet50 model for NG defects and small defect images but also improve the overall recognition accuracy through the feature reuse and bypass settings of the DenseNet169 model. The experimental results show that when the threshold is 0.5, the sensitivity of the improved multimodel fusion network can reach 99.2%, and the specificity is 99.5%. The sensitivity of Mix-Fusion is 1.2% higher than that of DenseNet169. High sensitivity means fewer missed NG images, and high specificity means less workload for employees. The improved model improves sensitivity and maintains high specificity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助奋斗的秋珊采纳,获得10
刚刚
刚刚
ICBC完成签到 ,获得积分10
刚刚
连夜雪完成签到,获得积分10
刚刚
小蘑菇应助smjjs采纳,获得20
刚刚
天天快乐应助困困小馒头采纳,获得10
刚刚
俭朴尔白发布了新的文献求助30
刚刚
licheng完成签到,获得积分10
刚刚
Owen应助疯狂的洋葱采纳,获得30
1秒前
王通发布了新的文献求助10
1秒前
1秒前
静_静完成签到 ,获得积分10
1秒前
1秒前
二哈发布了新的文献求助10
2秒前
Mikecheng完成签到,获得积分10
2秒前
2秒前
隐形曼青应助巴旦木采纳,获得10
3秒前
3秒前
Silvia完成签到,获得积分10
3秒前
bkagyin应助迅速路人采纳,获得10
3秒前
科目三应助寒塘渡鹤影采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Kaede发布了新的文献求助10
4秒前
4秒前
李卓完成签到,获得积分10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
桐桐应助热心的大船采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
早睡早起完成签到 ,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
魏士博完成签到,获得积分10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444