Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index

高光谱成像 像素 人工智能 回归 遥感 计算机科学 回归分析 分割 深度学习 机器学习 模式识别(心理学) 数学 统计 地理
作者
Jie Deng,Xunhe Zhang,Ziqian Yang,Congying Zhou,Rui Wang,Kai Zhang,Xuan Lv,Lujia Yang,Zhifang Wang,Pengju Li,Zhanhong Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108434-108434 被引量:28
标识
DOI:10.1016/j.compag.2023.108434
摘要

Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R2 value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R2 value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LDDLleor完成签到,获得积分10
刚刚
xiang完成签到 ,获得积分10
1秒前
塘仔完成签到,获得积分10
1秒前
MM完成签到,获得积分10
2秒前
2秒前
Ava应助闫佳美采纳,获得10
3秒前
3秒前
pophoo完成签到,获得积分10
3秒前
Stuki完成签到,获得积分10
3秒前
杨杨杨完成签到,获得积分10
4秒前
司徒元瑶完成签到 ,获得积分10
5秒前
木心完成签到,获得积分10
5秒前
科研小白完成签到,获得积分10
6秒前
391X小king给391X小king的求助进行了留言
6秒前
wlywdb完成签到,获得积分10
6秒前
SJW--666完成签到,获得积分0
7秒前
悦耳代双完成签到 ,获得积分10
7秒前
小y发布了新的文献求助10
8秒前
吗喽完成签到 ,获得积分10
8秒前
8秒前
shengch0234完成签到,获得积分10
9秒前
光能使者发布了新的文献求助10
9秒前
宋芝恬完成签到,获得积分10
9秒前
墨染完成签到 ,获得积分10
10秒前
静默完成签到 ,获得积分10
10秒前
GCC完成签到,获得积分10
10秒前
11秒前
yu风完成签到,获得积分10
11秒前
朝明完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
练习者发布了新的文献求助10
12秒前
12秒前
应急食品完成签到,获得积分10
17秒前
植物代谢完成签到,获得积分10
17秒前
CT完成签到,获得积分10
17秒前
小y完成签到,获得积分10
17秒前
笑林完成签到 ,获得积分10
17秒前
hunajx完成签到,获得积分10
18秒前
李思雨完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645203
求助须知:如何正确求助?哪些是违规求助? 4768026
关于积分的说明 15026718
捐赠科研通 4803706
什么是DOI,文献DOI怎么找? 2568447
邀请新用户注册赠送积分活动 1525738
关于科研通互助平台的介绍 1485378