Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index

高光谱成像 像素 人工智能 回归 遥感 计算机科学 回归分析 分割 深度学习 机器学习 模式识别(心理学) 数学 统计 地理
作者
Jie Deng,Xunhe Zhang,Ziqian Yang,Congying Zhou,Rui Wang,Kai Zhang,Xuan Lv,Lujia Yang,Zhifang Wang,Pengju Li,Zhanhong Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108434-108434 被引量:28
标识
DOI:10.1016/j.compag.2023.108434
摘要

Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R2 value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R2 value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nuoran发布了新的文献求助10
1秒前
1秒前
科研长颈鹿完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
huangtian205发布了新的文献求助10
3秒前
3秒前
jenny发布了新的文献求助10
4秒前
慕青应助htumfg采纳,获得10
4秒前
Y_完成签到,获得积分10
4秒前
Jiaaaa发布了新的文献求助10
4秒前
客念完成签到 ,获得积分10
5秒前
左手完成签到,获得积分10
5秒前
郭翔发布了新的文献求助10
5秒前
5秒前
DJH完成签到,获得积分10
5秒前
5秒前
6秒前
传奇3应助124dc采纳,获得10
6秒前
爆米花应助张宇采纳,获得10
6秒前
by完成签到,获得积分10
6秒前
充电宝应助宇文数学采纳,获得10
6秒前
7秒前
勤劳弘文完成签到,获得积分10
7秒前
7秒前
7秒前
yz发布了新的文献求助10
7秒前
李佳完成签到,获得积分10
8秒前
8秒前
上官若男应助流光采纳,获得10
8秒前
纹银完成签到,获得积分10
9秒前
9秒前
无私的荷花完成签到,获得积分10
9秒前
Loooong发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
会飞的胡桃完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824