Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index

高光谱成像 像素 人工智能 回归 遥感 计算机科学 回归分析 分割 深度学习 机器学习 模式识别(心理学) 数学 统计 地理
作者
Jie Deng,Xunhe Zhang,Ziqian Yang,Congying Zhou,Rui Wang,Kai Zhang,Xuan Lv,Lujia Yang,Zhifang Wang,Pengju Li,Zhanhong Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108434-108434 被引量:7
标识
DOI:10.1016/j.compag.2023.108434
摘要

Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R2 value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R2 value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨卿完成签到,获得积分10
刚刚
uraylong发布了新的文献求助10
1秒前
2秒前
达达利亚完成签到,获得积分10
2秒前
111发布了新的文献求助30
2秒前
ponytail完成签到,获得积分10
3秒前
榕小蜂完成签到 ,获得积分10
3秒前
3秒前
4秒前
wdy111应助Mila采纳,获得20
4秒前
hahhh7发布了新的文献求助10
4秒前
4秒前
科研通AI5应助huyuan采纳,获得10
5秒前
冰西瓜完成签到 ,获得积分0
5秒前
酱啊油完成签到,获得积分10
5秒前
charles发布了新的文献求助10
7秒前
LYL2003完成签到,获得积分10
7秒前
1231完成签到,获得积分10
7秒前
8秒前
大气的天蓝完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
白鸢发布了新的文献求助10
9秒前
有趣的灵魂完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
陈先生发布了新的文献求助10
10秒前
香蕉觅云应助糟糕的德地采纳,获得10
11秒前
11秒前
11秒前
搜集达人应助玥越采纳,获得30
11秒前
12秒前
12秒前
啊哦呃完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653