Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index

高光谱成像 像素 人工智能 回归 遥感 计算机科学 回归分析 分割 深度学习 机器学习 模式识别(心理学) 数学 统计 地理
作者
Jie Deng,Xunhe Zhang,Ziqian Yang,Congying Zhou,Rui Wang,Kai Zhang,Xuan Lv,Lujia Yang,Zhifang Wang,Pengju Li,Zhanhong Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108434-108434 被引量:28
标识
DOI:10.1016/j.compag.2023.108434
摘要

Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R2 value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R2 value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助tiezhu采纳,获得10
1秒前
拾光完成签到,获得积分10
1秒前
和路雪完成签到,获得积分10
2秒前
等待听安完成签到 ,获得积分10
2秒前
YWang完成签到,获得积分10
4秒前
諵十一完成签到,获得积分10
4秒前
4秒前
冷酷太清完成签到,获得积分10
4秒前
啦啦啦完成签到 ,获得积分10
4秒前
打打应助马明旋采纳,获得10
4秒前
5秒前
5秒前
5秒前
火狐狸kc完成签到,获得积分10
6秒前
月月发布了新的文献求助10
6秒前
6秒前
王SQ完成签到,获得积分10
6秒前
NexusExplorer应助Lmj采纳,获得10
7秒前
7秒前
元谷雪应助张正采纳,获得10
7秒前
大力诺言完成签到,获得积分10
7秒前
诚心晓露完成签到,获得积分10
8秒前
8秒前
Even关注了科研通微信公众号
8秒前
jintian完成签到 ,获得积分10
8秒前
10秒前
苹果百川发布了新的文献求助10
10秒前
粗暴的夏天完成签到,获得积分10
10秒前
芝士酱完成签到,获得积分10
10秒前
体贴的如之完成签到,获得积分10
10秒前
烂漫笑晴发布了新的文献求助10
10秒前
10秒前
杪123完成签到,获得积分10
11秒前
万能图书馆应助TNU采纳,获得10
11秒前
12秒前
ningqing完成签到,获得积分10
12秒前
miselling完成签到,获得积分10
12秒前
Zzx完成签到,获得积分10
12秒前
小畅发布了新的文献求助10
13秒前
唐唐完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977