已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index

高光谱成像 像素 人工智能 回归 遥感 计算机科学 回归分析 分割 深度学习 机器学习 模式识别(心理学) 数学 统计 地理
作者
Jie Deng,Xunhe Zhang,Ziqian Yang,Congying Zhou,Rui Wang,Kai Zhang,Xuan Lv,Lujia Yang,Zhifang Wang,Pengju Li,Zhanhong Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108434-108434 被引量:7
标识
DOI:10.1016/j.compag.2023.108434
摘要

Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R2 value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R2 value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助car子采纳,获得10
2秒前
科研通AI2S应助Jodie采纳,获得10
4秒前
4秒前
科研通AI2S应助崽崽采纳,获得10
4秒前
Specification应助暴躁的海ge采纳,获得10
6秒前
7秒前
叮叮爱吃糖完成签到,获得积分10
8秒前
membrane应助Q22采纳,获得10
8秒前
non丶non完成签到,获得积分10
8秒前
keyanli完成签到,获得积分10
10秒前
10秒前
13秒前
13秒前
瓜洲发布了新的文献求助70
13秒前
nianxunxi完成签到,获得积分10
14秒前
justin完成签到,获得积分10
14秒前
14秒前
15秒前
justin发布了新的文献求助30
17秒前
17秒前
侯卿发布了新的文献求助10
18秒前
Jaho完成签到,获得积分10
18秒前
xkyasc完成签到,获得积分10
20秒前
22秒前
22秒前
在水一方应助电催化丁真采纳,获得10
24秒前
25秒前
25秒前
runninging发布了新的文献求助10
27秒前
ay完成签到,获得积分10
28秒前
29秒前
传奇3应助boluo666采纳,获得10
30秒前
ay发布了新的文献求助10
31秒前
air完成签到,获得积分10
32秒前
汉堡包应助hu采纳,获得10
33秒前
超级路人发布了新的文献求助10
33秒前
独特听芹完成签到,获得积分20
34秒前
36秒前
Echo发布了新的文献求助10
36秒前
火星上映天完成签到,获得积分10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310840
求助须知:如何正确求助?哪些是违规求助? 2943651
关于积分的说明 8515912
捐赠科研通 2619022
什么是DOI,文献DOI怎么找? 1431741
科研通“疑难数据库(出版商)”最低求助积分说明 664472
邀请新用户注册赠送积分活动 649732