潘尼斯电池
细胞生物学
生物
功能(生物学)
调节器
主调节器
计算生物学
转录因子
遗传学
内分泌学
小肠
基因
作者
Chenbin Cui,Xinru Wang,Yao Zheng,Lin Wu,Lindeng Li,Hongkui Wei,Jian Peng
标识
DOI:10.1016/j.mucimm.2023.09.001
摘要
Serving as a part of intestinal innate immunity, Paneth cells play an important role in intestinal homeostasis maintenance via their multiple functions. However, the regulation of Paneth cells has been proven to be complex and diverse. Here, we identified nuclear receptor Nur77 as a novel regulator of Paneth cell differentiation and function. Nur77 deficiency led to the loss of Paneth cells in murine ileal crypts. Intestinal tissues or organoids with Nur77 deficiency exhibited the impaired intestinal stem cell niche and failed to enhance antimicrobial peptide expression after Paneth cell degranulation. The defects in Paneth cells and antimicrobial peptides in Nur7−/− mice led to intestinal microbiota disorders. Nur77 deficiency rendered postnatal mice susceptible to necrotizing enterocolitis. Mechanistically, Nur77 transcriptionally inhibited Dact1 expression to activate Wnt signaling activity, thus promoting Paneth cell differentiation and function. Taken together, our data suggest the regulatory role of Nur77 in Paneth cell differentiation and function and reveal a novel Dact1-mediated Wnt inhibition mechanism in Paneth cell development. Serving as a part of intestinal innate immunity, Paneth cells play an important role in intestinal homeostasis maintenance via their multiple functions. However, the regulation of Paneth cells has been proven to be complex and diverse. Here, we identified nuclear receptor Nur77 as a novel regulator of Paneth cell differentiation and function. Nur77 deficiency led to the loss of Paneth cells in murine ileal crypts. Intestinal tissues or organoids with Nur77 deficiency exhibited the impaired intestinal stem cell niche and failed to enhance antimicrobial peptide expression after Paneth cell degranulation. The defects in Paneth cells and antimicrobial peptides in Nur7−/− mice led to intestinal microbiota disorders. Nur77 deficiency rendered postnatal mice susceptible to necrotizing enterocolitis. Mechanistically, Nur77 transcriptionally inhibited Dact1 expression to activate Wnt signaling activity, thus promoting Paneth cell differentiation and function. Taken together, our data suggest the regulatory role of Nur77 in Paneth cell differentiation and function and reveal a novel Dact1-mediated Wnt inhibition mechanism in Paneth cell development.
科研通智能强力驱动
Strongly Powered by AbleSci AI