Assessing the performance of fully supervised and weakly supervised learning in breast cancer histopathology

计算机科学 可解释性 人工智能 机器学习 监督学习 Boosting(机器学习) 深度学习 人工神经网络
作者
Huan Kang,Qianqian Xu,Duofang Chen,Shenghan Ren,Hui Xie,Lin Wang,Yimin Gao,Maoguo Gong,Xueli Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121575-121575
标识
DOI:10.1016/j.eswa.2023.121575
摘要

Fully supervised learning (FSL) and weakly supervised learning based on multiple instance learning (WSLMIL) have become two mainstream paradigms for performing computer-aided pathological diagnosis (CAPD). It is well known that the high-intensity annotation burden of FSL and the performance degradation due to poor training constraints of WSLMIL are stumbling blocks for clinical translation. Even more unfortunate is the lack of comprehensive experimental analysis to help researchers make content-specific trade-offs between FSL and WSLMIL. In this work, we systematically compare the performances of FSL and WSLMIL on lymph node metastasis in breast cancer using a publicly available dataset. By analyzing the results of 16 backbone networks in the FSL paradigm, we find that emerging networks based on transformer (PVTv2-B2) and multi-layer perceptron (CycleMLP-B3) are more advantageous for performing patch-level classification task than convolution-based structure (ResNet50); combining their output with morphological feature extraction can be better used to universally perform slide-level classification task. However, the slight improvement brought by the evolution of the backbone network may be overshadowed by the aggregation operation in 6 WSLMIL algorithms, whereas relying on the in-domain backbone network can achieve a stable and excellent prediction performance in both quantitative analysis and interpretability comparisons. All the experimental results ultimately illustrate that the combination of in-domain backbone network and emergent aggregation operation becomes an economical and efficient technical tool for CAPD, which can be regarded as a compromise between FSL and WSLMIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡芙完成签到,获得积分10
1秒前
慈祥的冰露完成签到,获得积分10
1秒前
gmchen发布了新的文献求助10
2秒前
hihao发布了新的文献求助10
2秒前
看不懂应助王大壮采纳,获得10
2秒前
SAN完成签到,获得积分10
2秒前
大观天下发布了新的文献求助10
3秒前
Panther完成签到,获得积分10
3秒前
4秒前
所所应助泥肿大采纳,获得30
4秒前
天天快乐应助持卿采纳,获得10
5秒前
陶醉乐天发布了新的文献求助10
6秒前
幻雨翎完成签到,获得积分10
6秒前
7秒前
酷波er应助buxing采纳,获得10
7秒前
韭菜盒子完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助小王旺旺旺采纳,获得10
9秒前
研友_Zb1rln完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
yuqiubai完成签到,获得积分10
11秒前
Yy发布了新的文献求助30
11秒前
11秒前
陈权发布了新的文献求助10
12秒前
咎牛青完成签到,获得积分10
12秒前
斯文败类应助北北采纳,获得10
13秒前
13秒前
13秒前
14秒前
小巧飞莲发布了新的文献求助10
14秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
gnemnauy发布了新的文献求助10
15秒前
平常的刺猬完成签到 ,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298126
求助须知:如何正确求助?哪些是违规求助? 2933130
关于积分的说明 8462185
捐赠科研通 2606132
什么是DOI,文献DOI怎么找? 1422843
科研通“疑难数据库(出版商)”最低求助积分说明 661541
邀请新用户注册赠送积分活动 644895