Highly imbalanced fault classification of wind turbines using data resampling and hybrid ensemble method approach

计算机科学 重采样 风力发电 断层(地质) 集成学习 机器学习 人工智能 数据挖掘 模式识别(心理学) 电气工程 地质学 工程类 地震学
作者
Subhajit Chatterjee,Subhajit Chatterjee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107104-107104 被引量:4
标识
DOI:10.1016/j.engappai.2023.107104
摘要

Deep learning-based incipient fault diagnostic techniques have achieved surprisingly well in wind turbines. Due to component failures, wind turbines must undergo active maintenance, substantially influencing revenue and power generation. Unfortunately, there are consistently uneven data distributions between samples with faults and those without faults, resulting in incorrect fault classification. Wind turbine fault classification has a significant data imbalance problem, compromising learning attention for majority and minority classes. Machine learning methodologies based on Generative Adversarial Networks (GAN), over-sampling, and under-sampling techniques for generating synthetic data have been widely employed to address the imbalance data problem. However, the traditional synthetic minority oversampling technique (SMOTE) accomplishes oversampling using linear interpolation between close minority class samples, which could be confusing, subpar, and indistinguishable from the majority class. This study suggests combining over and under-sampling using adaptive SMOTE and edited nearest neighbors (ASMOTE-ENN) that incorporate over-sampling with adaptive SMOTE and under-sampling with ENN to improve the quality of the generated samples. With this resampling technique, noise in an imbalanced dataset is reduced on three levels by using an adaptive nearest neighbor selection algorithm to find the nearest neighbors that are visible. Then use SMOTE to create samples that precisely fall into the minority class, and later use the ENN technique to eliminate instances that contribute to noise afterwards. Resampling data created by combining over- and under-sampling approaches to match the data distribution over all classes is the foundation of the suggested method's efficacy. A hybrid ensemble method is used for effective classification, including boosting, bagging, and stacking techniques. The original unbalanced and balanced data using the ASMOTE-ENN algorithm were classified using the proposed hybrid ensemble method. The classification results show that the proposed strategy is more accurate than a few imbalanced fault diagnosis techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuanheqi应助科研通管家采纳,获得50
3秒前
小二郎应助科研通管家采纳,获得30
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
柚子完成签到,获得积分10
4秒前
4秒前
隐形凡雁发布了新的文献求助10
5秒前
6秒前
Lucas应助杨洪江采纳,获得10
7秒前
xxx完成签到,获得积分10
7秒前
无辜玉米完成签到 ,获得积分10
7秒前
忐忑的方盒完成签到 ,获得积分10
7秒前
下雪天的土豆完成签到 ,获得积分10
8秒前
千万雷同完成签到,获得积分10
8秒前
9秒前
genomed应助调皮的易槐采纳,获得10
9秒前
罗乐天完成签到,获得积分20
9秒前
9秒前
10秒前
自由白卉发布了新的文献求助20
10秒前
苏习习发布了新的文献求助10
10秒前
10秒前
柚C美式完成签到 ,获得积分10
10秒前
珍珠奶茶发布了新的文献求助10
11秒前
12秒前
欢喜的之瑶完成签到,获得积分10
12秒前
田様应助罗乐天采纳,获得10
12秒前
小仙女发布了新的文献求助10
13秒前
子车半烟发布了新的文献求助10
13秒前
秀丽的剑心完成签到,获得积分10
13秒前
Sharron完成签到 ,获得积分10
13秒前
科研通AI2S应助ymr采纳,获得30
13秒前
乐乐应助tjnusq采纳,获得10
14秒前
wcy发布了新的文献求助10
14秒前
Changlu发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655