Highly imbalanced fault classification of wind turbines using data resampling and hybrid ensemble method approach

计算机科学 重采样 风力发电 断层(地质) 集成学习 机器学习 人工智能 数据挖掘 模式识别(心理学) 地震学 地质学 电气工程 工程类
作者
Subhajit Chatterjee,Subhajit Chatterjee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107104-107104 被引量:4
标识
DOI:10.1016/j.engappai.2023.107104
摘要

Deep learning-based incipient fault diagnostic techniques have achieved surprisingly well in wind turbines. Due to component failures, wind turbines must undergo active maintenance, substantially influencing revenue and power generation. Unfortunately, there are consistently uneven data distributions between samples with faults and those without faults, resulting in incorrect fault classification. Wind turbine fault classification has a significant data imbalance problem, compromising learning attention for majority and minority classes. Machine learning methodologies based on Generative Adversarial Networks (GAN), over-sampling, and under-sampling techniques for generating synthetic data have been widely employed to address the imbalance data problem. However, the traditional synthetic minority oversampling technique (SMOTE) accomplishes oversampling using linear interpolation between close minority class samples, which could be confusing, subpar, and indistinguishable from the majority class. This study suggests combining over and under-sampling using adaptive SMOTE and edited nearest neighbors (ASMOTE-ENN) that incorporate over-sampling with adaptive SMOTE and under-sampling with ENN to improve the quality of the generated samples. With this resampling technique, noise in an imbalanced dataset is reduced on three levels by using an adaptive nearest neighbor selection algorithm to find the nearest neighbors that are visible. Then use SMOTE to create samples that precisely fall into the minority class, and later use the ENN technique to eliminate instances that contribute to noise afterwards. Resampling data created by combining over- and under-sampling approaches to match the data distribution over all classes is the foundation of the suggested method's efficacy. A hybrid ensemble method is used for effective classification, including boosting, bagging, and stacking techniques. The original unbalanced and balanced data using the ASMOTE-ENN algorithm were classified using the proposed hybrid ensemble method. The classification results show that the proposed strategy is more accurate than a few imbalanced fault diagnosis techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ABS发布了新的文献求助10
刚刚
刚刚
刚刚
小董发布了新的文献求助10
2秒前
华仔应助小乖采纳,获得10
2秒前
3秒前
传奇3应助蓝桉采纳,获得10
4秒前
bbhk完成签到,获得积分10
5秒前
倔大三发布了新的文献求助50
5秒前
帅气一刀发布了新的文献求助10
5秒前
包容书桃完成签到,获得积分20
6秒前
ding应助王赟晖采纳,获得10
6秒前
研友_VZG7GZ应助Random采纳,获得10
7秒前
研友_ngKyqn完成签到,获得积分10
7秒前
11发布了新的文献求助10
7秒前
7秒前
SU发布了新的文献求助10
7秒前
cossen完成签到,获得积分10
8秒前
冲冲冲完成签到,获得积分10
8秒前
雷桑完成签到,获得积分10
8秒前
怡然飞薇完成签到,获得积分10
9秒前
兰粥拉面应助甜甜灵波采纳,获得10
9秒前
包容书桃发布了新的文献求助10
10秒前
10秒前
Zhu完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
研友_VZG7GZ应助哭泣的冰海采纳,获得10
13秒前
13981592626发布了新的文献求助10
13秒前
玛卡巴卡发布了新的文献求助10
14秒前
14秒前
jinyu发布了新的文献求助10
14秒前
科研通AI6应助要不要买菜采纳,获得10
14秒前
苏小狸完成签到,获得积分10
14秒前
万能图书馆应助Shan采纳,获得10
14秒前
深情安青应助M.采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263714
求助须知:如何正确求助?哪些是违规求助? 4424148
关于积分的说明 13772216
捐赠科研通 4299225
什么是DOI,文献DOI怎么找? 2358965
邀请新用户注册赠送积分活动 1355269
关于科研通互助平台的介绍 1316520