Highly imbalanced fault classification of wind turbines using data resampling and hybrid ensemble method approach

计算机科学 重采样 风力发电 断层(地质) 集成学习 机器学习 人工智能 数据挖掘 模式识别(心理学) 地震学 地质学 电气工程 工程类
作者
Subhajit Chatterjee,Subhajit Chatterjee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107104-107104 被引量:4
标识
DOI:10.1016/j.engappai.2023.107104
摘要

Deep learning-based incipient fault diagnostic techniques have achieved surprisingly well in wind turbines. Due to component failures, wind turbines must undergo active maintenance, substantially influencing revenue and power generation. Unfortunately, there are consistently uneven data distributions between samples with faults and those without faults, resulting in incorrect fault classification. Wind turbine fault classification has a significant data imbalance problem, compromising learning attention for majority and minority classes. Machine learning methodologies based on Generative Adversarial Networks (GAN), over-sampling, and under-sampling techniques for generating synthetic data have been widely employed to address the imbalance data problem. However, the traditional synthetic minority oversampling technique (SMOTE) accomplishes oversampling using linear interpolation between close minority class samples, which could be confusing, subpar, and indistinguishable from the majority class. This study suggests combining over and under-sampling using adaptive SMOTE and edited nearest neighbors (ASMOTE-ENN) that incorporate over-sampling with adaptive SMOTE and under-sampling with ENN to improve the quality of the generated samples. With this resampling technique, noise in an imbalanced dataset is reduced on three levels by using an adaptive nearest neighbor selection algorithm to find the nearest neighbors that are visible. Then use SMOTE to create samples that precisely fall into the minority class, and later use the ENN technique to eliminate instances that contribute to noise afterwards. Resampling data created by combining over- and under-sampling approaches to match the data distribution over all classes is the foundation of the suggested method's efficacy. A hybrid ensemble method is used for effective classification, including boosting, bagging, and stacking techniques. The original unbalanced and balanced data using the ASMOTE-ENN algorithm were classified using the proposed hybrid ensemble method. The classification results show that the proposed strategy is more accurate than a few imbalanced fault diagnosis techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴实曼岚完成签到,获得积分10
刚刚
昂帕帕斯完成签到,获得积分10
1秒前
yy应助生动的芙蓉采纳,获得10
2秒前
2秒前
nn发布了新的文献求助10
3秒前
5秒前
肖果完成签到 ,获得积分10
6秒前
6秒前
Lucas应助白洛寒采纳,获得10
6秒前
yuan发布了新的文献求助10
7秒前
7秒前
所所应助lx采纳,获得10
7秒前
zyc发布了新的文献求助10
7秒前
寒梅恋雪完成签到 ,获得积分10
8秒前
长之欠发布了新的文献求助10
9秒前
俏皮皮带关注了科研通微信公众号
9秒前
科研通AI6应助阿肖呀采纳,获得10
10秒前
12秒前
nan11发布了新的文献求助10
12秒前
12秒前
13秒前
tian完成签到,获得积分10
13秒前
水蜜桃完成签到 ,获得积分10
13秒前
RED发布了新的文献求助10
16秒前
16秒前
18秒前
GingerF应助Liu采纳,获得50
18秒前
lms发布了新的文献求助10
18秒前
19秒前
我爱睡觉完成签到,获得积分20
19秒前
20秒前
21秒前
气球洋洋完成签到,获得积分10
21秒前
21秒前
21秒前
23秒前
jiejie321发布了新的文献求助10
24秒前
24秒前
我爱睡觉发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838