Highly imbalanced fault classification of wind turbines using data resampling and hybrid ensemble method approach

计算机科学 重采样 风力发电 断层(地质) 集成学习 机器学习 人工智能 数据挖掘 模式识别(心理学) 电气工程 地质学 工程类 地震学
作者
Subhajit Chatterjee,Subhajit Chatterjee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107104-107104 被引量:4
标识
DOI:10.1016/j.engappai.2023.107104
摘要

Deep learning-based incipient fault diagnostic techniques have achieved surprisingly well in wind turbines. Due to component failures, wind turbines must undergo active maintenance, substantially influencing revenue and power generation. Unfortunately, there are consistently uneven data distributions between samples with faults and those without faults, resulting in incorrect fault classification. Wind turbine fault classification has a significant data imbalance problem, compromising learning attention for majority and minority classes. Machine learning methodologies based on Generative Adversarial Networks (GAN), over-sampling, and under-sampling techniques for generating synthetic data have been widely employed to address the imbalance data problem. However, the traditional synthetic minority oversampling technique (SMOTE) accomplishes oversampling using linear interpolation between close minority class samples, which could be confusing, subpar, and indistinguishable from the majority class. This study suggests combining over and under-sampling using adaptive SMOTE and edited nearest neighbors (ASMOTE-ENN) that incorporate over-sampling with adaptive SMOTE and under-sampling with ENN to improve the quality of the generated samples. With this resampling technique, noise in an imbalanced dataset is reduced on three levels by using an adaptive nearest neighbor selection algorithm to find the nearest neighbors that are visible. Then use SMOTE to create samples that precisely fall into the minority class, and later use the ENN technique to eliminate instances that contribute to noise afterwards. Resampling data created by combining over- and under-sampling approaches to match the data distribution over all classes is the foundation of the suggested method's efficacy. A hybrid ensemble method is used for effective classification, including boosting, bagging, and stacking techniques. The original unbalanced and balanced data using the ASMOTE-ENN algorithm were classified using the proposed hybrid ensemble method. The classification results show that the proposed strategy is more accurate than a few imbalanced fault diagnosis techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助冬瓜熊采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
hhhhh应助张琳采纳,获得10
2秒前
威武从寒发布了新的文献求助10
2秒前
fiber发布了新的文献求助20
4秒前
HM发布了新的文献求助10
4秒前
JohnTong发布了新的文献求助10
4秒前
5秒前
5秒前
乐观若烟发布了新的文献求助10
6秒前
zhhl2006完成签到,获得积分10
6秒前
zhouzhou完成签到,获得积分10
6秒前
啊宁完成签到 ,获得积分10
6秒前
JoshuaChen发布了新的文献求助10
6秒前
开朗满天完成签到 ,获得积分10
7秒前
7秒前
7秒前
9秒前
赘婿应助Max采纳,获得10
9秒前
9秒前
Erislastem完成签到,获得积分10
9秒前
volcanoes完成签到,获得积分10
9秒前
蘇q完成签到 ,获得积分10
9秒前
Encore发布了新的文献求助10
9秒前
慈祥的翠梅完成签到,获得积分10
9秒前
10秒前
李爱国应助王不王采纳,获得10
10秒前
苏silence发布了新的文献求助10
10秒前
万能图书馆应助爱因斯宣采纳,获得10
10秒前
今后应助YZzzJ采纳,获得10
10秒前
如意雅山发布了新的文献求助10
10秒前
桢桢树发布了新的文献求助10
11秒前
戚薇发布了新的文献求助10
11秒前
11秒前
杰杰完成签到,获得积分10
12秒前
SciGPT应助gnr2000采纳,获得30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582