An analysis of day and night bicyclist injury severities in vehicle/bicycle crashes: A comparison of unconstrained and partially constrained temporal modeling approaches

毒物控制 能见度 伤害预防 航程(航空) 运输工程 环境科学 地理 工程类 气象学 环境卫生 医学 航空航天工程
作者
Nawaf Alnawmasi,Fred Mannering
出处
期刊:Analytic Methods in Accident Research [Elsevier]
卷期号:40: 100301-100301 被引量:24
标识
DOI:10.1016/j.amar.2023.100301
摘要

Due to visibility limitations and other factors, the injuries sustained by bicyclists in nighttime vehicle-bicycle crashes tend to be more severe than daytime crashes. This paper seeks to provide insights into this day/night injury severity phenomenon by studying how day/night bicyclist injury severities have changed in crashes that occurred before, during, and after the COVID-19 lock downs. Using data from vehicle-bicycle crashes in the state of Florida over a three-year period (from 2019 to 2021 inclusive), separate yearly models of bicyclist-injury severities (with possible outcomes of severe injury, minor injury, and no visible injury) were estimated using a random parameters logit approach with possible heterogeneity in the means and variances of random parameters. Likelihood ratio tests were conducted to examine the overall stability of model estimates across the studied years as well as day/night differences, and a comparison of partially constrained and unconstrained temporal modeling approaches was undertaken. A wide range of variables potentially affecting resulting bicyclist injury severities in vehicle/bicycle crashes was considered including bicyclist and vehicle driver information, vehicle features, roadways and environmental conditions, temporal characteristics, and roadway features. The findings show statistically significant injury-severity differences between daytime and nighttime before, during and after the COVID-19 pandemic. Out-of-sample simulation results suggest that improving the visibility of bicyclist through mandated reflectivity, improved roadway illumination, undertaking public awareness campaigns relating to nighttime bicyclist safety, and vulnerable road user detection sensors in vehicles can all contribute to substantially improving nighttime bicyclist safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助she采纳,获得30
1秒前
xiaoshi发布了新的文献求助50
2秒前
田様应助雨之夏日采纳,获得10
3秒前
可爱千兰完成签到,获得积分10
4秒前
风语过完成签到,获得积分10
6秒前
黑裤子熊发布了新的文献求助10
8秒前
9秒前
9秒前
搜集达人应助小樁采纳,获得10
11秒前
arniu2008发布了新的文献求助10
13秒前
劳伦斯晨完成签到,获得积分10
15秒前
SciGPT应助MM采纳,获得10
16秒前
不坠发布了新的文献求助30
17秒前
曾经山灵完成签到 ,获得积分10
20秒前
22秒前
ad发布了新的文献求助10
25秒前
南山无梅落完成签到 ,获得积分10
27秒前
Benz完成签到,获得积分10
27秒前
27秒前
28秒前
Luffy发布了新的文献求助10
28秒前
雨之夏日发布了新的文献求助10
28秒前
29秒前
30秒前
tommasi24发布了新的文献求助10
30秒前
jiangjiang完成签到,获得积分10
30秒前
科研通AI6.1应助不坠采纳,获得10
31秒前
32秒前
KevenDing完成签到,获得积分10
32秒前
逍遥发布了新的文献求助10
32秒前
Benz发布了新的文献求助10
33秒前
ZXW完成签到 ,获得积分10
33秒前
34秒前
35秒前
小郝已读博完成签到 ,获得积分10
35秒前
35秒前
37秒前
Luffy完成签到,获得积分10
37秒前
hs完成签到,获得积分10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877764
求助须知:如何正确求助?哪些是违规求助? 6545523
关于积分的说明 15682183
捐赠科研通 4996442
什么是DOI,文献DOI怎么找? 2692710
邀请新用户注册赠送积分活动 1634734
关于科研通互助平台的介绍 1592400