Bayesian regularization in multiple-indicators multiple-causes models.

先验概率 协变量 超参数 Lasso(编程语言) 贝叶斯概率 潜变量 统计 数学 正规化(语言学) 样本量测定 弹性网正则化 计量经济学 计算机科学 人工智能 算法 回归 万维网
作者
Lijin Zhang,Xinya Liang
出处
期刊:Psychological Methods [American Psychological Association]
被引量:1
标识
DOI:10.1037/met0000594
摘要

Integrating regularization methods into structural equation modeling is gaining increasing popularity. The purpose of regularization is to improve variable selection, model estimation, and prediction accuracy. In this study, we aim to: (a) compare Bayesian regularization methods for exploring covariate effects in multiple-indicators multiple-causes models, (b) examine the sensitivity of results to hyperparameter settings of penalty priors, and (c) investigate prediction accuracy through cross-validation. The Bayesian regularization methods examined included: ridge, lasso, adaptive lasso, spike-and-slab prior (SSP) and its variants, and horseshoe and its variants. Sparse solutions were developed for the structural coefficient matrix that contained only a small portion of nonzero path coefficients characterizing the effects of selected covariates on the latent variable. Results from the simulation study showed that compared to diffuse priors, penalty priors were advantageous in handling small sample sizes and collinearity among covariates. Priors with only the global penalty (ridge and lasso) yielded higher model convergence rates and power, whereas priors with both the global and local penalties (horseshoe and SSP) provided more accurate parameter estimates for medium and large covariate effects. The horseshoe and SSP improved accuracy in predicting factor scores, while achieving more parsimonious models. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
糊涂的勒完成签到,获得积分10
2秒前
3秒前
子衿发布了新的文献求助10
3秒前
心随以动发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
超级的鹅完成签到,获得积分10
7秒前
gzy780819发布了新的文献求助10
7秒前
7秒前
XIXI完成签到,获得积分20
8秒前
8秒前
毛豆爸爸应助violetyjm采纳,获得20
10秒前
10秒前
10秒前
10秒前
He发布了新的文献求助10
11秒前
11秒前
子铭完成签到,获得积分10
11秒前
Owen应助马某某某某某采纳,获得10
12秒前
song发布了新的文献求助10
13秒前
布丁完成签到 ,获得积分10
15秒前
15秒前
15秒前
XIE发布了新的文献求助50
16秒前
zz发布了新的文献求助10
17秒前
毛豆爸爸应助violetyjm采纳,获得20
18秒前
李朝富发布了新的文献求助10
18秒前
心随以动发布了新的文献求助10
18秒前
19秒前
Cao完成签到 ,获得积分10
20秒前
genomed应助愫问采纳,获得20
21秒前
郑岩狭完成签到 ,获得积分10
21秒前
优雅雁菱完成签到,获得积分10
21秒前
22秒前
23秒前
Singularity发布了新的文献求助10
24秒前
24秒前
毛豆爸爸应助violetyjm采纳,获得20
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102