Deep learning based emulator for simulating CMAQ surface NO2 levels over the CONUS

CMAQ 环境科学 稳健性(进化) 早晨 气象学 灵敏度(控制系统) 氮氧化物 相关系数 大气科学 模拟 计算机科学 空气质量指数 化学 机器学习 工程类 物理 生物化学 基因 燃烧 有机化学 电子工程 天文
作者
Ahmed Khan Salman,Yunsoo Choi,Jincheol Park,Seyedali Mousavinezhad,Mahsa Payami,Mahmoudreza Momeni,Masoud Ghahremanloo
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:316: 120192-120192 被引量:5
标识
DOI:10.1016/j.atmosenv.2023.120192
摘要

This study details the development and evaluation of an emulator model of the Community Multiscale Air Quality (CMAQ) model, utilizing a U-Net deep learning architecture to accelerate the simulation of surface NO2 concentrations across the Contiguous United States (CONUS). The emulator employs a subset of meteorological, land cover, and emission input variables identical to those in CMAQ. An initial assessment of the model based on 3-fold monthly cross-validation during the summer (JJA) demonstrates excellent accuracy for 1-h NO2 concentration, with a correlation coefficient (R) of 0.979 and an Index of Agreement (IOA) of 0.989. Subsequently, the model's robustness is examined by training it with NEI 2011 and 2014 data and then evaluating it using NEI 2017 data. This yields an R of 0.949 and an IOA of 0.974. We utilize the emulator to investigate the semi-normalized sensitivity of NO2 concentrations to NOx emissions, which exhibits a satisfactory alignment with CMAQ Decoupled Direct Method (DDM) sensitivities, with an MAE of 0.271 ppb for 1-h sensitivity coefficients. Diurnal cycle analysis of NOx sensitivity coefficients spatially averaged in 15 major urban environments indicates slight over- and underestimations of the morning and evening peaks, respectively, with the MAE varying from 0.27 (Dallas) to 0.92 ppb (Los Angeles). Remarkably, the emulator's computational efficiency significantly surpasses CMAQ's, providing more than 400 times the simulation speed on a single CPU and over 600 times when utilizing both CPU and GPU. As such, the emulator represents a promising tool for efficient CMAQ modeling, with potential applications in health impact assessments, emission reduction strategies, and emission inventory optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时渐惜发布了新的文献求助10
刚刚
rre发布了新的文献求助10
1秒前
1秒前
2秒前
8R60d8应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
KYT应助科研通管家采纳,获得10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
Hanoi347应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
Stella应助科研通管家采纳,获得10
4秒前
zzz应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
zw完成签到,获得积分10
6秒前
务实寄松发布了新的文献求助10
7秒前
orixero应助QinQin采纳,获得10
7秒前
mh完成签到,获得积分10
9秒前
Roman完成签到,获得积分10
9秒前
zmj完成签到,获得积分10
10秒前
yuy完成签到,获得积分20
10秒前
浮游应助wwaakk采纳,获得10
10秒前
浮雨微清发布了新的文献求助10
11秒前
优雅麦片发布了新的文献求助10
11秒前
11秒前
霜降发布了新的文献求助10
12秒前
13秒前
英俊的菲鹰完成签到,获得积分10
13秒前
Jasper应助yuy采纳,获得10
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580794
求助须知:如何正确求助?哪些是违规求助? 4665572
关于积分的说明 14756655
捐赠科研通 4607084
什么是DOI,文献DOI怎么找? 2528118
邀请新用户注册赠送积分活动 1497448
关于科研通互助平台的介绍 1466379