亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating urban noise along road network from street view imagery

噪音(视频) 计算机科学 深度学习 交通噪声 随机森林 地理 人工智能 遥感 图像(数学) 降噪
作者
Jing Huang,Teng Fei,Yuhao Kang,Jun Li,Ziyu Liu,Guofeng Wu
出处
期刊:International journal of geographical information systems [Informa]
卷期号:38 (1): 128-155 被引量:19
标识
DOI:10.1080/13658816.2023.2274475
摘要

Estimating road traffic noise is essential for examining the quality of sounding environment and mitigating such a non-negligible pollutant in urban areas. However, existing estimated models often have limited applicability to specific traffic conditions, while the required parameters may not be readily available for city-wide collection. This paper proposes a data-driven approach for measuring road-level acoustic information of traffic with street view imagery. Specifically, we utilize portable vehicle-equipped hardware for in-situ noise acquisition and employ a deep learning model ResNet to learn high-level visual features from street view images that are closely associated with road traffic noise. The ResNet captures meaningful patterns from the input data, and the output probability vectors are then fed into a Random-Forest regression algorithm to quantitatively estimate the noise in decibels for different road segments. The MAE and RMSE of the DCNN-RF model are 2.01 and 2.71, respectively. Additionally, we employ a gradient-weighted Class Active Mapping approach to visually interpret our deep learning model and explore the significant elements in streetscapes that contribute to the model's estimations. Our proposed framework facilitates low-cost and fine-scale road traffic noise estimations and sheds light on how auditory information could be inferred from street imagery, which may benefit practices in geography and urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助超级野狼采纳,获得10
2秒前
沉静的毛衣完成签到,获得积分10
4秒前
小马甲应助Lh采纳,获得10
5秒前
13秒前
14秒前
温水完成签到 ,获得积分10
15秒前
超级野狼发布了新的文献求助10
18秒前
crx发布了新的文献求助10
18秒前
撒旦啊实打实的完成签到,获得积分10
24秒前
可爱的函函应助Guts采纳,获得10
29秒前
科研通AI6.1应助Guts采纳,获得10
29秒前
乐乐应助材料生采纳,获得10
30秒前
CodeCraft应助crx采纳,获得10
31秒前
淡淡的秋柳完成签到 ,获得积分10
40秒前
40秒前
和光同尘完成签到,获得积分10
42秒前
柚子完成签到 ,获得积分10
43秒前
材料生发布了新的文献求助10
45秒前
49秒前
53秒前
万事胜意完成签到 ,获得积分10
55秒前
59秒前
minkeyantong完成签到 ,获得积分10
1分钟前
xintai完成签到,获得积分10
1分钟前
材料生完成签到,获得积分10
1分钟前
丘比特应助wu采纳,获得30
1分钟前
共享精神应助zhaoyali采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
姚奋斗完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475