Prediction of IOL decentration, tilt and axial position using anterior segment OCT data

倾斜(摄像机) 线性回归 人工智能 人口 计算机科学 数学 医学 机器学习 环境卫生 几何学
作者
Achim Langenbucher,Nóra Szentmáry,Alan Cayless,Jascha Wendelstein,Peter Hoffmann
出处
期刊:Graefes Archive for Clinical and Experimental Ophthalmology [Springer Nature]
被引量:6
标识
DOI:10.1007/s00417-023-06208-9
摘要

Abstract Background Intraocular lenses (IOLs) require proper positioning in the eye to provide good imaging performance. This is especially important for premium IOLs. The purpose of this study was to develop prediction models for estimating IOL decentration, tilt and the axial IOL equator position (IOLEQ) based on preoperative biometric and tomographic measures. Methods Based on a dataset ( N = 250) containing preoperative IOLMaster 700 and pre-/postoperative Casia2 measurements from a cataractous population, we implemented shallow feedforward neural networks and multilinear regression models to predict the IOL decentration, tilt and IOLEQ from the preoperative biometric and tomography measures. After identifying the relevant predictors using a stepwise linear regression approach and training of the models (150 training and 50 validation data points), the performance was evaluated using an N = 50 subset of test data. Results In general, all models performed well. Prediction of IOL decentration shows the lowest performance, whereas prediction of IOL tilt and especially IOLEQ showed superior performance. According to the 95% confidence intervals, decentration/tilt/IOLEQ could be predicted within 0.3 mm/1.5°/0.3 mm. The neural network performed slightly better compared to the regression, but without significance for decentration and tilt. Conclusion Neural network or linear regression-based prediction models for IOL decentration, tilt and axial lens position could be used for modern IOL power calculation schemes dealing with ‘real’ IOL positions and for indications for premium lenses, for which misplacement is known to induce photic effects and image distortion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricardo完成签到 ,获得积分10
刚刚
ie发布了新的文献求助10
3秒前
10秒前
陈曦完成签到,获得积分10
11秒前
顾矜应助叩白采纳,获得10
12秒前
共享精神应助nanomolar采纳,获得10
12秒前
Ava应助無羁采纳,获得10
14秒前
ainikiki完成签到,获得积分10
14秒前
18秒前
8R60d8应助Rio采纳,获得10
19秒前
婷婷应助杨宇彤采纳,获得10
19秒前
狂野绿竹发布了新的文献求助10
24秒前
随机子应助司纤户羽采纳,获得10
24秒前
26秒前
SPUwangshunfeng完成签到,获得积分10
27秒前
万能图书馆应助nnnd77采纳,获得10
30秒前
高伟杰完成签到,获得积分10
31秒前
Migrol完成签到,获得积分10
32秒前
sean完成签到 ,获得积分10
33秒前
33秒前
发文章发布了新的文献求助50
34秒前
nanomolar发布了新的文献求助10
37秒前
阿钉完成签到 ,获得积分10
38秒前
39秒前
大个应助郝宝真采纳,获得10
40秒前
乐天林完成签到 ,获得积分10
41秒前
41秒前
43秒前
45秒前
NanXin发布了新的文献求助30
45秒前
肥肉叉烧发布了新的文献求助10
46秒前
47秒前
JQKing完成签到,获得积分10
49秒前
Albert完成签到,获得积分10
50秒前
50秒前
51秒前
思睿拜完成签到 ,获得积分10
54秒前
肥肉叉烧完成签到,获得积分10
55秒前
56秒前
庆qing发布了新的文献求助10
56秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165538
求助须知:如何正确求助?哪些是违规求助? 2816691
关于积分的说明 7913299
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388