Prediction of IOL decentration, tilt and axial position using anterior segment OCT data

倾斜(摄像机) 线性回归 人工智能 人口 计算机科学 数学 医学 机器学习 几何学 环境卫生
作者
Achim Langenbucher,Nóra Szentmáry,Alan Cayless,Jascha Wendelstein,Peter Hoffmann
出处
期刊:Graefes Archive for Clinical and Experimental Ophthalmology [Springer Nature]
被引量:6
标识
DOI:10.1007/s00417-023-06208-9
摘要

Abstract Background Intraocular lenses (IOLs) require proper positioning in the eye to provide good imaging performance. This is especially important for premium IOLs. The purpose of this study was to develop prediction models for estimating IOL decentration, tilt and the axial IOL equator position (IOLEQ) based on preoperative biometric and tomographic measures. Methods Based on a dataset ( N = 250) containing preoperative IOLMaster 700 and pre-/postoperative Casia2 measurements from a cataractous population, we implemented shallow feedforward neural networks and multilinear regression models to predict the IOL decentration, tilt and IOLEQ from the preoperative biometric and tomography measures. After identifying the relevant predictors using a stepwise linear regression approach and training of the models (150 training and 50 validation data points), the performance was evaluated using an N = 50 subset of test data. Results In general, all models performed well. Prediction of IOL decentration shows the lowest performance, whereas prediction of IOL tilt and especially IOLEQ showed superior performance. According to the 95% confidence intervals, decentration/tilt/IOLEQ could be predicted within 0.3 mm/1.5°/0.3 mm. The neural network performed slightly better compared to the regression, but without significance for decentration and tilt. Conclusion Neural network or linear regression-based prediction models for IOL decentration, tilt and axial lens position could be used for modern IOL power calculation schemes dealing with ‘real’ IOL positions and for indications for premium lenses, for which misplacement is known to induce photic effects and image distortion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学生发布了新的文献求助10
刚刚
失眠呆呆鱼完成签到 ,获得积分10
1秒前
JamesYang发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
JIN完成签到,获得积分10
2秒前
3秒前
顺利毕业完成签到,获得积分10
4秒前
4秒前
Zzzhou23发布了新的文献求助30
5秒前
xxx发布了新的文献求助10
5秒前
Yuanyuan发布了新的文献求助10
6秒前
XU徐发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
顺利毕业发布了新的文献求助10
8秒前
8秒前
8秒前
漫游完成签到,获得积分10
8秒前
9秒前
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
快乐的厉完成签到,获得积分10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
Twonej应助科研通管家采纳,获得30
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420