Differential effect of interventions in patients with prediabetes stratified by a machine learning‐based diabetes progression prediction model

糖尿病前期 医学 吡格列酮 内科学 糖尿病 人口 曲线下面积 接收机工作特性 心理干预 空腹血糖受损 2型糖尿病 糖耐量受损 内分泌学 环境卫生 精神科
作者
Xiantong Zou,Yingying Luo,Qi Huang,Zhanxing Zhu,Yufeng Li,Xiuying Zhang,Xianghai Zhou,Linong Ji
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (1): 97-107 被引量:14
标识
DOI:10.1111/dom.15291
摘要

Abstract Aim To investigate whether stratifying participants with prediabetes according to their diabetes progression risks (PR) could affect their responses to interventions. Methods We developed a machine learning‐based model to predict the 1‐year diabetes PR (ML‐PR) with the least predictors. The model was developed and internally validated in participants with prediabetes in the Pinggu Study (a prospective population‐based survey in suburban Beijing; n = 622). Patients from the Beijing Prediabetes Reversion Program cohort (a multicentre randomized control trial to evaluate the efficacy of lifestyle and/or pioglitazone on prediabetes reversion; n = 1936) were stratified to low‐, medium‐ and high‐risk groups using ML‐PR. Different effect of four interventions within subgroups on prediabetes reversal and diabetes progression was assessed. Results Using least predictors including fasting plasma glucose, 2‐h postprandial glucose after 75 g glucose administration, glycated haemoglobin, high‐density lipoprotein cholesterol and triglycerides, and the ML algorithm XGBoost, ML‐PR successfully predicted the 1‐year progression of participants with prediabetes in the Pinggu study [internal area under the curve of the receiver operating characteristic curve 0.80 (0.72–0.89)] and Beijing Prediabetes Reversion Program [external area under the curve of the receiver operating characteristic curve 0.80 (0.74–0.86)]. In the high‐risk group pioglitazone plus intensive lifestyle therapy significantly reduced diabetes progression by about 50% at year l and the end of the trial in the high‐risk group compared with conventional lifestyle therapy with placebo. In the medium‐ or low‐risk group, intensified lifestyle therapy, pioglitazone or their combination did not show any benefit on diabetes progression and prediabetes reversion. Conclusions This study suggests personalized treatment for prediabetes according to their PR is necessary. ML‐PR model with simple clinical variables may facilitate personal treatment strategies in participants with prediabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chao完成签到,获得积分10
1秒前
科研通AI6应助JY采纳,获得10
1秒前
笑看小旭旭完成签到,获得积分20
4秒前
幽默书瑶完成签到 ,获得积分10
4秒前
4秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
4秒前
852应助78888采纳,获得10
4秒前
星期天发布了新的文献求助10
4秒前
桐桐应助张瑜采纳,获得10
5秒前
邓茗予完成签到,获得积分20
5秒前
水雾发布了新的文献求助10
5秒前
Lucas应助禹宛白采纳,获得10
6秒前
6秒前
吴先生完成签到,获得积分10
7秒前
7秒前
jin_0124发布了新的文献求助10
7秒前
8秒前
冯雅婷完成签到 ,获得积分10
8秒前
9秒前
9秒前
欣喜谷槐完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
小白鼠完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
科研通AI6应助Fortune采纳,获得10
11秒前
DrLee发布了新的文献求助10
12秒前
搞怪半烟完成签到,获得积分10
12秒前
害怕的惜文完成签到,获得积分10
12秒前
wlnhyF完成签到,获得积分10
12秒前
13秒前
mhpvv完成签到,获得积分10
13秒前
13秒前
东新发布了新的文献求助10
13秒前
王帅发布了新的文献求助10
13秒前
SciGPT应助YZQ采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802