Differential effect of interventions in patients with prediabetes stratified by a machine learning‐based diabetes progression prediction model

糖尿病前期 医学 吡格列酮 内科学 糖尿病 人口 曲线下面积 接收机工作特性 心理干预 空腹血糖受损 2型糖尿病 糖耐量受损 内分泌学 环境卫生 精神科
作者
Xiantong Zou,Yingying Luo,Qi Huang,Zhanxing Zhu,Yufeng Li,Xiuying Zhang,Xianghai Zhou,Linong Ji
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (1): 97-107 被引量:14
标识
DOI:10.1111/dom.15291
摘要

Abstract Aim To investigate whether stratifying participants with prediabetes according to their diabetes progression risks (PR) could affect their responses to interventions. Methods We developed a machine learning‐based model to predict the 1‐year diabetes PR (ML‐PR) with the least predictors. The model was developed and internally validated in participants with prediabetes in the Pinggu Study (a prospective population‐based survey in suburban Beijing; n = 622). Patients from the Beijing Prediabetes Reversion Program cohort (a multicentre randomized control trial to evaluate the efficacy of lifestyle and/or pioglitazone on prediabetes reversion; n = 1936) were stratified to low‐, medium‐ and high‐risk groups using ML‐PR. Different effect of four interventions within subgroups on prediabetes reversal and diabetes progression was assessed. Results Using least predictors including fasting plasma glucose, 2‐h postprandial glucose after 75 g glucose administration, glycated haemoglobin, high‐density lipoprotein cholesterol and triglycerides, and the ML algorithm XGBoost, ML‐PR successfully predicted the 1‐year progression of participants with prediabetes in the Pinggu study [internal area under the curve of the receiver operating characteristic curve 0.80 (0.72–0.89)] and Beijing Prediabetes Reversion Program [external area under the curve of the receiver operating characteristic curve 0.80 (0.74–0.86)]. In the high‐risk group pioglitazone plus intensive lifestyle therapy significantly reduced diabetes progression by about 50% at year l and the end of the trial in the high‐risk group compared with conventional lifestyle therapy with placebo. In the medium‐ or low‐risk group, intensified lifestyle therapy, pioglitazone or their combination did not show any benefit on diabetes progression and prediabetes reversion. Conclusions This study suggests personalized treatment for prediabetes according to their PR is necessary. ML‐PR model with simple clinical variables may facilitate personal treatment strategies in participants with prediabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LBQ完成签到,获得积分10
1秒前
CodeCraft应助prode采纳,获得10
1秒前
zero发布了新的文献求助10
1秒前
mumian发布了新的文献求助10
2秒前
豆子发布了新的文献求助10
2秒前
2秒前
3秒前
辛勤夜柳发布了新的文献求助10
3秒前
南山完成签到 ,获得积分10
4秒前
Zora发布了新的文献求助10
4秒前
5秒前
丰富荧完成签到 ,获得积分10
5秒前
Amber发布了新的文献求助30
8秒前
8秒前
刘白告完成签到,获得积分20
9秒前
Elena发布了新的文献求助10
10秒前
张辰12536完成签到,获得积分10
11秒前
prode完成签到,获得积分20
11秒前
承乐应助那时花开采纳,获得10
11秒前
12秒前
wannna完成签到,获得积分10
12秒前
xrt完成签到,获得积分10
12秒前
桶桶发布了新的文献求助10
13秒前
文艺的不凡完成签到,获得积分20
14秒前
流沙无言完成签到 ,获得积分10
14秒前
prode发布了新的文献求助10
15秒前
邢哥哥完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
元谷雪应助HRXYZ采纳,获得10
19秒前
小蚂蚁完成签到,获得积分10
22秒前
复杂的元珊完成签到,获得积分10
23秒前
领导范儿应助水123采纳,获得10
23秒前
FashionBoy应助西风漂流采纳,获得10
26秒前
有魅力的大船完成签到,获得积分10
29秒前
30秒前
冷艳念真完成签到,获得积分10
31秒前
风清扬发布了新的文献求助10
31秒前
郝出站完成签到,获得积分10
32秒前
32秒前
Wind应助Amber采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603867
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14855984
捐赠科研通 4695232
什么是DOI,文献DOI怎么找? 2541009
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814