Data programming enabled weak supervised labeling for ECG time series

计算机科学 判别式 人工智能 机器学习 标记数据 启发式 模式识别(心理学) 稳健性(进化) 数据挖掘 生物化学 化学 基因 操作系统
作者
Priyanka Gupta,Saandra Nandakumar,Manik Gupta,Ganapati Panda
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105540-105540
标识
DOI:10.1016/j.bspc.2023.105540
摘要

Electrocardiogram (ECG) beat labeling performed using conventional methods is unsuitable for ECG signals obtained from Internet of Things (IoT) wearable devices. The conventional methods employ manually labeled data captured using multiple leads, while most IoT devices produce unlabeled single lead data. Getting ECG data labeled by a subject matter expert (SME) is a resource/time/cost-intensive task. Our research addresses this challenge by proposing an automatic labeling technique for ECG time-series data obtained from a single lead. The technique employs a data programming (DP) enabled weak supervised learning (WSL) technique for automatic labeling of ECG beats. We have proposed nine novel heuristics-based labeling functions (LFs), applied them to each ECG beat and subsequently used a generative model (GM) to assign a probabilistic label to each ECG beat employing both intra and inter-patient paradigm on MIT-BIH and INCART datasets. Further, a discriminative model (DM) is trained on top of the GM for maximizing data coverage and ensure robustness. Finally, data augmentation (DA) is used to solve the class imbalance problem inherent in ECG data. Our experimental results demonstrate a simpler, faster, and more accurate labeling method i.e., approximately 105 ECG beats are labeled in an hour with an accuracy of 92.2% from single lead data. In contrast with human annotators, the time and cost requirements of our proposed labeling method are significantly less.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得50
刚刚
香蕉觅云应助科研通管家采纳,获得30
刚刚
Linos应助科研通管家采纳,获得10
刚刚
受伤毛豆应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
李爱国应助阿猫采纳,获得10
刚刚
刚刚
Hilda007应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
科研通AI6应助剧院的饭桶采纳,获得10
1秒前
无极微光应助现代的青寒采纳,获得20
1秒前
米奇完成签到 ,获得积分10
1秒前
2秒前
2秒前
David123发布了新的文献求助10
2秒前
4秒前
4秒前
zywzyw完成签到,获得积分10
4秒前
4秒前
又又完成签到 ,获得积分10
4秒前
君尧关注了科研通微信公众号
5秒前
1101592875应助阳佟仇天采纳,获得10
5秒前
执着蓝完成签到,获得积分20
5秒前
bjx发布了新的文献求助10
5秒前
DreamSeker8发布了新的文献求助10
5秒前
6秒前
精明一寡发布了新的文献求助10
6秒前
myheat发布了新的文献求助10
6秒前
希望天下0贩的0应助bingyv采纳,获得10
6秒前
白衣卿相发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836