A Robust RF Fingerprint Extraction Scheme for GNSS Spoofing Detection

欺骗攻击 全球导航卫星系统应用 计算机科学 人工智能 深度学习 短时傅里叶变换 特征提取 特征学习 模式识别(心理学) 全球定位系统 傅里叶变换 电信 数学 计算机网络 数学分析 傅里叶分析
作者
Chengjun Guo,Zhongpei Yang
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 卷期号:: 199-205 被引量:3
标识
DOI:10.33012/2023.19302
摘要

Global navigation satellite systems (GNSS) have played an important role in space stations, aviation, maritime and mass transit. One of the main disadvantages of GNSS is their vulnerability to spoofing. A successful spoofing attack can have serious consequences. In regards to this issue, our method of GNSS spoofing detection based on radio frequency fingerprint (RFF) is considered a promising technology. Due to manufacturing defects, even GNSS transmitters of the same model exhibit subtle differences known as RFF, which possess uniqueness and persistence, and can be considered as the DNA of GNSS transmitters. Our method autonomously extracts the RFF from the received signals by exploiting deep learning, which avoids the laborious manual feature selection process compared to other methods. The time-frequency representation of the signal is used as input to the deep learning. We evaluate Shorttime Fourier Transform (STFT) time-frequency representation method. We explore the possibility of using the Support Vector Data Description (SVDD) for GNSS spoofing detection. We evaluate two deep learning-based GNSS signal classification methods. One is RFF identification based on the original signal, namely IQ+CNN in this article, which preprocesses the collected IQ samples and directly inputs them into the deep learning model for training and classification. This method completely uses the deep learning model to learn the physical layer characteristics of wireless signal. The second is RFF identification based on two-dimensional representation of signals, namely STFT+RESNET50 in this article, which aims to extract RFF in the time-frequency domain. The experimental dataset is generated by software, and we compare the classification accuracy of the two methods at different SNRs. The experiments show that our method is reasonable for GNSS spoofing detection. In addition, the research of RFF-based GNSS spoofing detection is still in its infancy, and we promote the development of this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hafcyx完成签到,获得积分10
刚刚
caicifeng发布了新的文献求助10
1秒前
bakasha完成签到,获得积分10
2秒前
kkk完成签到,获得积分10
3秒前
善学以致用应助小蝶采纳,获得10
4秒前
xiaoliang完成签到,获得积分10
5秒前
cyberman发布了新的文献求助10
5秒前
正直草丛完成签到,获得积分10
5秒前
Ava应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
luoshi应助科研通管家采纳,获得10
6秒前
6秒前
luoshi应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
一只小鲨鱼完成签到 ,获得积分10
7秒前
陈1992完成签到 ,获得积分10
7秒前
7秒前
小番茄完成签到 ,获得积分10
7秒前
踏实如曼发布了新的文献求助10
7秒前
9秒前
10秒前
捞钱阿达完成签到,获得积分10
11秒前
JX完成签到,获得积分10
11秒前
Chief完成签到,获得积分10
12秒前
popo6150完成签到,获得积分10
14秒前
可爱的函函应助JX采纳,获得10
14秒前
合适忆之发布了新的文献求助10
14秒前
赘婿应助研友_ZGjEKn采纳,获得10
15秒前
快乐滑板应助mage采纳,获得10
16秒前
快乐滑板应助mage采纳,获得10
16秒前
16秒前
lwj完成签到,获得积分10
16秒前
fiell完成签到,获得积分10
17秒前
1fser1完成签到,获得积分10
17秒前
Serein完成签到,获得积分10
18秒前
18秒前
丘比特应助服部平次采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353798
求助须知:如何正确求助?哪些是违规求助? 2978264
关于积分的说明 8685006
捐赠科研通 2659804
什么是DOI,文献DOI怎么找? 1456351
科研通“疑难数据库(出版商)”最低求助积分说明 674342
邀请新用户注册赠送积分活动 665110