A Robust RF Fingerprint Extraction Scheme for GNSS Spoofing Detection

欺骗攻击 全球导航卫星系统应用 计算机科学 人工智能 深度学习 短时傅里叶变换 特征提取 特征学习 模式识别(心理学) 全球定位系统 傅里叶变换 电信 数学 计算机网络 傅里叶分析 数学分析
作者
Chengjun Guo,Zhongpei Yang
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 卷期号:: 199-205 被引量:3
标识
DOI:10.33012/2023.19302
摘要

Global navigation satellite systems (GNSS) have played an important role in space stations, aviation, maritime and mass transit. One of the main disadvantages of GNSS is their vulnerability to spoofing. A successful spoofing attack can have serious consequences. In regards to this issue, our method of GNSS spoofing detection based on radio frequency fingerprint (RFF) is considered a promising technology. Due to manufacturing defects, even GNSS transmitters of the same model exhibit subtle differences known as RFF, which possess uniqueness and persistence, and can be considered as the DNA of GNSS transmitters. Our method autonomously extracts the RFF from the received signals by exploiting deep learning, which avoids the laborious manual feature selection process compared to other methods. The time-frequency representation of the signal is used as input to the deep learning. We evaluate Shorttime Fourier Transform (STFT) time-frequency representation method. We explore the possibility of using the Support Vector Data Description (SVDD) for GNSS spoofing detection. We evaluate two deep learning-based GNSS signal classification methods. One is RFF identification based on the original signal, namely IQ+CNN in this article, which preprocesses the collected IQ samples and directly inputs them into the deep learning model for training and classification. This method completely uses the deep learning model to learn the physical layer characteristics of wireless signal. The second is RFF identification based on two-dimensional representation of signals, namely STFT+RESNET50 in this article, which aims to extract RFF in the time-frequency domain. The experimental dataset is generated by software, and we compare the classification accuracy of the two methods at different SNRs. The experiments show that our method is reasonable for GNSS spoofing detection. In addition, the research of RFF-based GNSS spoofing detection is still in its infancy, and we promote the development of this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
limi完成签到,获得积分10
刚刚
文刀完成签到,获得积分10
刚刚
pick_up完成签到,获得积分10
1秒前
1秒前
AHR发布了新的文献求助10
2秒前
111发布了新的文献求助30
2秒前
Koma完成签到,获得积分10
2秒前
平家boy发布了新的文献求助10
2秒前
2秒前
limi发布了新的文献求助10
3秒前
一一一应助感动白凝采纳,获得10
3秒前
4秒前
4秒前
Koma发布了新的文献求助10
5秒前
冷静剑成完成签到,获得积分10
5秒前
灰鲸发布了新的文献求助10
5秒前
我爱读文献完成签到,获得积分10
6秒前
6秒前
Zero发布了新的文献求助10
6秒前
背后的映寒完成签到,获得积分10
6秒前
Steven24go发布了新的文献求助10
7秒前
今后应助ZZC10采纳,获得10
7秒前
落山姬完成签到,获得积分10
8秒前
8秒前
8秒前
xiaoxiao完成签到,获得积分10
8秒前
9秒前
111发布了新的文献求助10
9秒前
高皮皮完成签到,获得积分10
9秒前
小青椒应助childe采纳,获得50
9秒前
忐忑的尔容完成签到,获得积分10
10秒前
10秒前
10秒前
wx2360ouc完成签到 ,获得积分10
10秒前
SciGPT应助rongrongchen采纳,获得10
11秒前
852应助浅柠半夏采纳,获得10
11秒前
科研通AI6应助尤大二采纳,获得10
11秒前
12秒前
Xmq完成签到,获得积分20
12秒前
bioorange完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090