A Robust RF Fingerprint Extraction Scheme for GNSS Spoofing Detection

欺骗攻击 全球导航卫星系统应用 计算机科学 人工智能 深度学习 短时傅里叶变换 特征提取 特征学习 模式识别(心理学) 全球定位系统 傅里叶变换 电信 数学 计算机网络 傅里叶分析 数学分析
作者
Chengjun Guo,Zhongpei Yang
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 卷期号:: 199-205 被引量:3
标识
DOI:10.33012/2023.19302
摘要

Global navigation satellite systems (GNSS) have played an important role in space stations, aviation, maritime and mass transit. One of the main disadvantages of GNSS is their vulnerability to spoofing. A successful spoofing attack can have serious consequences. In regards to this issue, our method of GNSS spoofing detection based on radio frequency fingerprint (RFF) is considered a promising technology. Due to manufacturing defects, even GNSS transmitters of the same model exhibit subtle differences known as RFF, which possess uniqueness and persistence, and can be considered as the DNA of GNSS transmitters. Our method autonomously extracts the RFF from the received signals by exploiting deep learning, which avoids the laborious manual feature selection process compared to other methods. The time-frequency representation of the signal is used as input to the deep learning. We evaluate Shorttime Fourier Transform (STFT) time-frequency representation method. We explore the possibility of using the Support Vector Data Description (SVDD) for GNSS spoofing detection. We evaluate two deep learning-based GNSS signal classification methods. One is RFF identification based on the original signal, namely IQ+CNN in this article, which preprocesses the collected IQ samples and directly inputs them into the deep learning model for training and classification. This method completely uses the deep learning model to learn the physical layer characteristics of wireless signal. The second is RFF identification based on two-dimensional representation of signals, namely STFT+RESNET50 in this article, which aims to extract RFF in the time-frequency domain. The experimental dataset is generated by software, and we compare the classification accuracy of the two methods at different SNRs. The experiments show that our method is reasonable for GNSS spoofing detection. In addition, the research of RFF-based GNSS spoofing detection is still in its infancy, and we promote the development of this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的半邪完成签到,获得积分10
刚刚
刚刚
源源源完成签到 ,获得积分10
1秒前
滴滴答完成签到,获得积分10
1秒前
2秒前
Z1发布了新的文献求助10
2秒前
小蘑菇应助hgc采纳,获得10
2秒前
晚风发布了新的文献求助10
2秒前
HX完成签到,获得积分10
2秒前
年轻小之发布了新的文献求助10
3秒前
隐形曼青应助hx采纳,获得10
3秒前
蓓蓓0303发布了新的文献求助10
3秒前
北还北完成签到,获得积分10
3秒前
4秒前
fenger111完成签到,获得积分20
4秒前
高兴123发布了新的文献求助10
4秒前
4秒前
4秒前
PMME完成签到,获得积分10
5秒前
Ava应助jiaojiao采纳,获得10
6秒前
jonsan完成签到,获得积分10
6秒前
一二一完成签到,获得积分10
6秒前
LGS发布了新的文献求助10
6秒前
7秒前
超级亿先发布了新的文献求助10
7秒前
清秀的碧彤完成签到,获得积分10
7秒前
阳光代容完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
LULU完成签到,获得积分10
10秒前
一二一发布了新的文献求助10
10秒前
11秒前
Sichen孟完成签到 ,获得积分10
11秒前
香蕉觅云应助蓓蓓0303采纳,获得10
12秒前
阿萨大大完成签到,获得积分10
12秒前
高大厉发布了新的文献求助30
12秒前
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489