A Robust RF Fingerprint Extraction Scheme for GNSS Spoofing Detection

欺骗攻击 全球导航卫星系统应用 计算机科学 人工智能 深度学习 短时傅里叶变换 特征提取 特征学习 模式识别(心理学) 全球定位系统 傅里叶变换 电信 数学 计算机网络 傅里叶分析 数学分析
作者
Chengjun Guo,Zhongpei Yang
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 卷期号:: 199-205 被引量:3
标识
DOI:10.33012/2023.19302
摘要

Global navigation satellite systems (GNSS) have played an important role in space stations, aviation, maritime and mass transit. One of the main disadvantages of GNSS is their vulnerability to spoofing. A successful spoofing attack can have serious consequences. In regards to this issue, our method of GNSS spoofing detection based on radio frequency fingerprint (RFF) is considered a promising technology. Due to manufacturing defects, even GNSS transmitters of the same model exhibit subtle differences known as RFF, which possess uniqueness and persistence, and can be considered as the DNA of GNSS transmitters. Our method autonomously extracts the RFF from the received signals by exploiting deep learning, which avoids the laborious manual feature selection process compared to other methods. The time-frequency representation of the signal is used as input to the deep learning. We evaluate Shorttime Fourier Transform (STFT) time-frequency representation method. We explore the possibility of using the Support Vector Data Description (SVDD) for GNSS spoofing detection. We evaluate two deep learning-based GNSS signal classification methods. One is RFF identification based on the original signal, namely IQ+CNN in this article, which preprocesses the collected IQ samples and directly inputs them into the deep learning model for training and classification. This method completely uses the deep learning model to learn the physical layer characteristics of wireless signal. The second is RFF identification based on two-dimensional representation of signals, namely STFT+RESNET50 in this article, which aims to extract RFF in the time-frequency domain. The experimental dataset is generated by software, and we compare the classification accuracy of the two methods at different SNRs. The experiments show that our method is reasonable for GNSS spoofing detection. In addition, the research of RFF-based GNSS spoofing detection is still in its infancy, and we promote the development of this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
Ava应助飞飞飞采纳,获得10
3秒前
5秒前
7秒前
平城落叶完成签到,获得积分10
8秒前
OK完成签到,获得积分10
9秒前
11秒前
毛毛完成签到,获得积分10
12秒前
自觉的绮烟完成签到,获得积分10
12秒前
GuMingyang完成签到,获得积分10
12秒前
12秒前
害羞的妙梦完成签到,获得积分10
13秒前
13秒前
难过怀绿完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
可积完成签到,获得积分10
17秒前
ShengjuChen完成签到 ,获得积分10
17秒前
tony发布了新的文献求助10
18秒前
健康的人生完成签到,获得积分10
18秒前
严yee发布了新的文献求助10
18秒前
19秒前
飞飞飞发布了新的文献求助10
19秒前
19秒前
刘科研完成签到,获得积分10
19秒前
kosmos完成签到,获得积分10
20秒前
20秒前
Khaos_0929完成签到,获得积分10
21秒前
22秒前
zhangmeimei完成签到,获得积分10
22秒前
化学镁铝完成签到,获得积分10
23秒前
24秒前
yyyyyy完成签到 ,获得积分10
25秒前
Satan发布了新的文献求助10
25秒前
26秒前
科研通AI6.1应助tony采纳,获得10
26秒前
怜梦完成签到,获得积分10
26秒前
cookie完成签到,获得积分10
27秒前
conveyor6发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707