A deep learning framework for identifying Alzheimer's disease using fMRI-based brain network

功能连接 神经科学 疾病 深度学习 默认模式网络 心理学 人工智能 计算机科学 医学 内科学
作者
Ruofan Wang,Qiguang He,Chunxiao Han,Haodong Wang,Lianshuan Shi,Yanqiu Che
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:17 被引量:4
标识
DOI:10.3389/fnins.2023.1177424
摘要

The convolutional neural network (CNN) is a mainstream deep learning (DL) algorithm, and it has gained great fame in solving problems from clinical examination and diagnosis, such as Alzheimer's disease (AD). AD is a degenerative disease difficult to clinical diagnosis due to its unclear underlying pathological mechanism. Previous studies have primarily focused on investigating structural abnormalities in the brain's functional networks related to the AD or proposing different deep learning approaches for AD classification.The aim of this study is to leverage the advantages of combining brain topological features extracted from functional network exploration and deep features extracted by the CNN. We establish a novel fMRI-based classification framework that utilizes Resting-state functional magnetic resonance imaging (rs-fMRI) with the phase synchronization index (PSI) and 2D-CNN to detect abnormal brain functional connectivity in AD.First, PSI was applied to construct the brain network by region of interest (ROI) signals obtained from data preprocessing stage, and eight topological features were extracted. Subsequently, the 2D-CNN was applied to the PSI matrix to explore the local and global patterns of the network connectivity by extracting eight deep features from the 2D-CNN convolutional layer.Finally, classification analysis was carried out on the combined PSI and 2D-CNN methods to recognize AD by using support vector machine (SVM) with 5-fold cross-validation strategy. It was found that the classification accuracy of combined method achieved 98.869%.These findings show that our framework can adaptively combine the best brain network features to explore network synchronization, functional connections, and characterize brain functional abnormalities, which could effectively detect AD anomalies by the extracted features that may provide new insights into exploring the underlying pathogenesis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
慧子完成签到,获得积分10
3秒前
能干的茗发布了新的文献求助10
4秒前
ljkshr完成签到,获得积分10
6秒前
6秒前
UAU发布了新的文献求助10
6秒前
慧子发布了新的文献求助10
6秒前
Lizzy发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
zhouxuefeng发布了新的文献求助10
10秒前
11秒前
12秒前
黑冰A发布了新的文献求助10
13秒前
上官若男应助CHAIZH采纳,获得10
13秒前
log发布了新的文献求助10
14秒前
17秒前
rainhowk完成签到,获得积分10
17秒前
落落完成签到,获得积分10
17秒前
赘婿应助黑冰A采纳,获得10
18秒前
SYLH应助winjay采纳,获得10
19秒前
19秒前
Shabby0-0完成签到,获得积分10
20秒前
20秒前
完美世界应助budingman采纳,获得30
22秒前
揽月完成签到,获得积分10
22秒前
bji完成签到,获得积分10
22秒前
22秒前
赘婿应助满意的盼夏采纳,获得10
23秒前
23秒前
小冯爱睡觉完成签到,获得积分20
24秒前
25秒前
揽月发布了新的文献求助10
25秒前
WN发布了新的文献求助10
25秒前
26秒前
liangyiteng发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498