A deep learning framework for identifying Alzheimer's disease using fMRI-based brain network

功能连接 神经科学 疾病 深度学习 默认模式网络 心理学 人工智能 计算机科学 医学 内科学
作者
Ruofan Wang,Qiguang He,Chunxiao Han,Haodong Wang,Lianshuan Shi,Yanqiu Che
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:4
标识
DOI:10.3389/fnins.2023.1177424
摘要

The convolutional neural network (CNN) is a mainstream deep learning (DL) algorithm, and it has gained great fame in solving problems from clinical examination and diagnosis, such as Alzheimer's disease (AD). AD is a degenerative disease difficult to clinical diagnosis due to its unclear underlying pathological mechanism. Previous studies have primarily focused on investigating structural abnormalities in the brain's functional networks related to the AD or proposing different deep learning approaches for AD classification.The aim of this study is to leverage the advantages of combining brain topological features extracted from functional network exploration and deep features extracted by the CNN. We establish a novel fMRI-based classification framework that utilizes Resting-state functional magnetic resonance imaging (rs-fMRI) with the phase synchronization index (PSI) and 2D-CNN to detect abnormal brain functional connectivity in AD.First, PSI was applied to construct the brain network by region of interest (ROI) signals obtained from data preprocessing stage, and eight topological features were extracted. Subsequently, the 2D-CNN was applied to the PSI matrix to explore the local and global patterns of the network connectivity by extracting eight deep features from the 2D-CNN convolutional layer.Finally, classification analysis was carried out on the combined PSI and 2D-CNN methods to recognize AD by using support vector machine (SVM) with 5-fold cross-validation strategy. It was found that the classification accuracy of combined method achieved 98.869%.These findings show that our framework can adaptively combine the best brain network features to explore network synchronization, functional connections, and characterize brain functional abnormalities, which could effectively detect AD anomalies by the extracted features that may provide new insights into exploring the underlying pathogenesis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NexusExplorer应助武雨寒采纳,获得10
1秒前
ljl发布了新的文献求助10
1秒前
菠菜驳回了水牛应助
2秒前
2秒前
xt发布了新的文献求助10
4秒前
科研通AI2S应助君寻采纳,获得10
6秒前
Jenny完成签到,获得积分10
6秒前
咸鱼发布了新的文献求助10
6秒前
6秒前
东方幼旋完成签到,获得积分10
7秒前
ff发布了新的文献求助10
7秒前
张柔完成签到 ,获得积分10
7秒前
boyue发布了新的文献求助10
9秒前
要减肥的断秋完成签到,获得积分10
10秒前
一条小柱完成签到,获得积分10
10秒前
66666完成签到,获得积分20
10秒前
迅速易云完成签到,获得积分10
11秒前
11秒前
hux完成签到,获得积分10
11秒前
辛勤的怀亦完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Orange应助卡卡采纳,获得10
13秒前
ff完成签到,获得积分10
14秒前
冰凌花开发布了新的文献求助10
14秒前
14秒前
情怀应助fanboyz采纳,获得10
15秒前
15秒前
ryen发布了新的文献求助10
16秒前
纯情的馒头给纯情的馒头的求助进行了留言
16秒前
lisa完成签到,获得积分10
16秒前
elena完成签到,获得积分10
17秒前
May完成签到,获得积分10
17秒前
李爱国应助ysx采纳,获得10
18秒前
咸鱼完成签到,获得积分10
19秒前
20秒前
000发布了新的文献求助10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128679
求助须知:如何正确求助?哪些是违规求助? 2779501
关于积分的说明 7743462
捐赠科研通 2434802
什么是DOI,文献DOI怎么找? 1293635
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514