Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database

数据库 计算机科学 甲烷化 领域(数学) 催化作用 化学 数学 生物化学 纯数学
作者
Antoine Salden,Maik Budde,Carolina A. Garcia-Soto,Omar Biondo,J.B.F.O. Barauna,Marzia Faedda,Beatrice Musig,Chloé Fromentin,Minh Nguyen-Quang,Harry Philpott,Golshid Hasrack,Domenico Aceto,Yuxiang Cai,Federico Azzolina Jury,Annemie Bogaerts,Patrick Da Costa,Richard Engeln,María Elena Gálvez,Timo Gans,Tomás García,Vasco Guerra,Carlos Henriques,Monika Motak,M.V. Navarro,Vasile I. Pârvulescu,Gerard van Rooij,Bogdan Samojeden,Ana Sobota,Paolo Tosi,Xin Tu,Olivier Guaitella
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:86: 318-342 被引量:6
标识
DOI:10.1016/j.jechem.2023.07.022
摘要

This paper brings the comparison of performances of CO2 conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field, organised in an open access online database. This tool is open to all users to carry out their own analyses, but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made, and ultimately to improve the efficiency of CO2 conversion by plasma-catalysis. The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO2 conversion processes, be it methanation, dry reforming of methane, methanolisation, or others. As a result of this rapid increase, there is a need for a set of standard procedures to rigorously compare performances of different systems. However, this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures. Fortunately however, the accumulated data within the CO2 plasma-catalysis community has become large enough to warrant so-called "big data" studies more familiar in the fields of medicine and the social sciences. To enable comparisons between multiple data sets and make future research more effective, this work proposes the first database on CO2 conversion performances by plasma-catalysis open to the whole community. This database has been initiated in the framework of a H2020 European project and is called the "PIONEER DataBase". The database gathers a large amount of CO2 conversion performance data such as conversion rate, energy efficiency, and selectivity for numerous plasma sources coupled with or without a catalyst. Each data set is associated with metadata describing the gas mixture, the plasma source, the nature of the catalyst, and the form of coupling with the plasma. Beyond the database itself, a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public. The simple and fast visualisation of the state of the art puts new results into context, identifies literal gaps in data, and consequently points towards promising research routes. More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling. Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO2 plasma-catalytic studies. Finally, the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kydd发布了新的文献求助10
1秒前
Papillon完成签到,获得积分10
1秒前
平淡的文龙完成签到,获得积分10
1秒前
盛夏完成签到,获得积分10
1秒前
贤惠的正豪完成签到,获得积分20
2秒前
3秒前
沛沛完成签到,获得积分10
4秒前
四月完成签到,获得积分10
4秒前
5秒前
常青完成签到,获得积分10
5秒前
WxChen发布了新的文献求助10
5秒前
guoguo完成签到,获得积分10
6秒前
MADKAI发布了新的文献求助10
6秒前
6秒前
今后应助.....采纳,获得10
6秒前
7秒前
快帮我找找完成签到,获得积分10
7秒前
7秒前
Wendy完成签到,获得积分10
7秒前
无花果应助XXF采纳,获得10
8秒前
juanjuan完成签到,获得积分20
8秒前
立波发布了新的文献求助10
8秒前
灵溪完成签到 ,获得积分10
9秒前
故意的沛蓝完成签到,获得积分10
9秒前
9秒前
小巧日记本完成签到,获得积分10
9秒前
7275XXX完成签到,获得积分10
10秒前
我是老大应助xwc采纳,获得30
11秒前
123完成签到,获得积分10
12秒前
ChangSZ应助研友_8oYg4n采纳,获得10
12秒前
思源应助暴躁的安柏采纳,获得10
13秒前
13秒前
李繁蕊发布了新的文献求助10
13秒前
Evelyn关注了科研通微信公众号
14秒前
14秒前
WKY完成签到,获得积分10
15秒前
manan发布了新的文献求助10
15秒前
亮亮关注了科研通微信公众号
15秒前
yuming完成签到,获得积分10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740