Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database

数据库 计算机科学 甲烷化 领域(数学) 催化作用 化学 数学 生物化学 纯数学
作者
Antoine Salden,Maik Budde,Carolina A. Garcia-Soto,Omar Biondo,J.B.F.O. Barauna,Marzia Faedda,Beatrice Musig,Chloé Fromentin,Minh Nguyen-Quang,Harry Philpott,Golshid Hasrack,Domenico Aceto,Yuxiang Cai,Federico Azzolina Jury,Annemie Bogaerts,Patrick Da Costa,Richard Engeln,María Elena Gálvez,Timo Gans,Tomás García,Vasco Guerra,Carlos Henriques,Monika Motak,M.V. Navarro,Vasile I. Pârvulescu,Gerard van Rooij,Bogdan Samojeden,Ana Sobota,Paolo Tosi,Xin Tu,Olivier Guaitella
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:86: 318-342 被引量:6
标识
DOI:10.1016/j.jechem.2023.07.022
摘要

This paper brings the comparison of performances of CO2 conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field, organised in an open access online database. This tool is open to all users to carry out their own analyses, but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made, and ultimately to improve the efficiency of CO2 conversion by plasma-catalysis. The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO2 conversion processes, be it methanation, dry reforming of methane, methanolisation, or others. As a result of this rapid increase, there is a need for a set of standard procedures to rigorously compare performances of different systems. However, this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures. Fortunately however, the accumulated data within the CO2 plasma-catalysis community has become large enough to warrant so-called "big data" studies more familiar in the fields of medicine and the social sciences. To enable comparisons between multiple data sets and make future research more effective, this work proposes the first database on CO2 conversion performances by plasma-catalysis open to the whole community. This database has been initiated in the framework of a H2020 European project and is called the "PIONEER DataBase". The database gathers a large amount of CO2 conversion performance data such as conversion rate, energy efficiency, and selectivity for numerous plasma sources coupled with or without a catalyst. Each data set is associated with metadata describing the gas mixture, the plasma source, the nature of the catalyst, and the form of coupling with the plasma. Beyond the database itself, a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public. The simple and fast visualisation of the state of the art puts new results into context, identifies literal gaps in data, and consequently points towards promising research routes. More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling. Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO2 plasma-catalytic studies. Finally, the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AamirAli完成签到,获得积分10
1秒前
在水一方应助太阳采纳,获得10
1秒前
田様应助gggggggbao采纳,获得10
1秒前
2秒前
简单的鲜花完成签到,获得积分10
2秒前
科研通AI6应助lily采纳,获得10
2秒前
杨锐完成签到,获得积分10
3秒前
风趣从霜完成签到,获得积分10
3秒前
从容的完成签到 ,获得积分10
4秒前
5秒前
5秒前
ssy发布了新的文献求助10
5秒前
感动城完成签到,获得积分10
6秒前
儒雅的小懒虫完成签到 ,获得积分10
8秒前
mika910完成签到 ,获得积分10
8秒前
8秒前
9秒前
ybouo完成签到,获得积分10
10秒前
122456完成签到,获得积分10
10秒前
华国锋应助加贺采纳,获得20
11秒前
Jave发布了新的文献求助10
11秒前
ssy完成签到,获得积分10
12秒前
小蘑菇应助Tao采纳,获得10
12秒前
田様应助可靠雪雪采纳,获得10
14秒前
领导范儿应助嘻嘻采纳,获得10
15秒前
15秒前
麦芽糖完成签到,获得积分10
15秒前
orixero应助朴素的士晋采纳,获得10
15秒前
ybouo发布了新的文献求助10
15秒前
Eternity完成签到,获得积分10
16秒前
你的二踢脚完成签到,获得积分10
16秒前
topteng完成签到,获得积分20
17秒前
samurai完成签到,获得积分10
17秒前
三千年的成长完成签到,获得积分10
17秒前
18秒前
小叶完成签到,获得积分10
19秒前
Feng11完成签到,获得积分10
20秒前
20秒前
跳跃幻竹发布了新的文献求助10
20秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262