材料科学
热电效应
热电发电机
热电材料
热导率
功勋
陶瓷
光电子学
可控性
能量转换效率
碲化铋
复合材料
工程物理
物理
数学
应用数学
工程类
热力学
作者
Qiujun Hu,Ding Luo,Junbiao Guo,Wenbin Qiu
标识
DOI:10.1021/acsami.3c08116
摘要
Thermoelectric (TE) energy conversion technology provides a promising way to improve the efficiency of fossil energy by generating electricity from low-grade waste heat. With regard to these applications, thermoelectric generators (TEGs) should be designed from system integration perspectives to simultaneously improve heat transfer efficiency and system simplification as well as the robust mechanical properties. However, typical TEGs fabricated by conventional methods barely accomplish such requirements. Herein, high-quality TEGs were assembled by combining the well-flowable spherical bismuth telluride (BT) powdered precursors and selective laser melting (SLM) technology. By optimizing the electronic and phonon transport properties through defect engineering driven by 3D printing, a high figure of merit was accomplished for 1.27 (p-type) and 1.13 (n-type) in BT. This achievement is primarily attributed to the nonequilibrium solidification mechanism, which leads to the formation of multiscale defects during the 3D printing process. The introduction of these multiscale defects enables the effective scattering of wide frequency phonons, leading to a substantial reduction in lattice thermal conductivity. Meanwhile, robust mechanical properties were obtained in the printed p-type/n-type BT TE materials parallel to the building direction (BD) with a compressive strength reaching 257/250 MPa by employing the fine grain structure and the high density of nanotwins introduced during the SLM process. A well shape-controllable and high-performance TEG was designed using 3D-printed BT half-rings, and an output power of 134 mW was achieved at a temperature gradient of 38.9 °C. Our study opens a new route for the great potential of TE materials based on standard commercial SLM 3D printing technology for low-grade waste heat emitted from structures with heterogeneous shapes.
科研通智能强力驱动
Strongly Powered by AbleSci AI