Transformers versus LSTMs for electronic trading

变压器 计算机科学 循环神经网络 人工神经网络 人工智能 建筑 时间序列 短时记忆 机器学习 工程类 电压 电气工程 艺术 视觉艺术
作者
Paul Bilokon,Yitao Qiu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.11400
摘要

With the rapid development of artificial intelligence, long short term memory (LSTM), one kind of recurrent neural network (RNN), has been widely applied in time series prediction. Like RNN, Transformer is designed to handle the sequential data. As Transformer achieved great success in Natural Language Processing (NLP), researchers got interested in Transformer's performance on time series prediction, and plenty of Transformer-based solutions on long time series forecasting have come out recently. However, when it comes to financial time series prediction, LSTM is still a dominant architecture. Therefore, the question this study wants to answer is: whether the Transformer-based model can be applied in financial time series prediction and beat LSTM. To answer this question, various LSTM-based and Transformer-based models are compared on multiple financial prediction tasks based on high-frequency limit order book data. A new LSTM-based model called DLSTM is built and new architecture for the Transformer-based model is designed to adapt for financial prediction. The experiment result reflects that the Transformer-based model only has the limited advantage in absolute price sequence prediction. The LSTM-based models show better and more robust performance on difference sequence prediction, such as price difference and price movement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆访梦完成签到,获得积分20
1秒前
我是老大应助葭月十七采纳,获得10
1秒前
2秒前
QQQQQQQ发布了新的文献求助10
2秒前
2秒前
kerio发布了新的文献求助10
2秒前
3秒前
3秒前
LRX关闭了LRX文献求助
4秒前
4秒前
Phylis关注了科研通微信公众号
4秒前
5秒前
脆弱的仙人掌完成签到,获得积分20
5秒前
6秒前
Asdaf发布了新的文献求助30
6秒前
惜风发布了新的文献求助30
7秒前
热情的夏完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
zhang20082418发布了新的文献求助10
9秒前
研友_Z60NmL完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助悦耳的豌豆采纳,获得10
10秒前
赘婿应助windli采纳,获得10
10秒前
11秒前
11秒前
景明关注了科研通微信公众号
13秒前
杀猪刀完成签到,获得积分10
13秒前
白衣修身发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
赘婿应助瘦成闪电大圆脸采纳,获得10
16秒前
CodeCraft应助灵活性采纳,获得10
16秒前
逍遥发布了新的文献求助10
16秒前
17秒前
17秒前
john完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847