Transformers versus LSTMs for electronic trading

变压器 计算机科学 循环神经网络 人工神经网络 人工智能 建筑 时间序列 短时记忆 机器学习 工程类 电压 电气工程 艺术 视觉艺术
作者
Paul Bilokon,Yitao Qiu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.11400
摘要

With the rapid development of artificial intelligence, long short term memory (LSTM), one kind of recurrent neural network (RNN), has been widely applied in time series prediction. Like RNN, Transformer is designed to handle the sequential data. As Transformer achieved great success in Natural Language Processing (NLP), researchers got interested in Transformer's performance on time series prediction, and plenty of Transformer-based solutions on long time series forecasting have come out recently. However, when it comes to financial time series prediction, LSTM is still a dominant architecture. Therefore, the question this study wants to answer is: whether the Transformer-based model can be applied in financial time series prediction and beat LSTM. To answer this question, various LSTM-based and Transformer-based models are compared on multiple financial prediction tasks based on high-frequency limit order book data. A new LSTM-based model called DLSTM is built and new architecture for the Transformer-based model is designed to adapt for financial prediction. The experiment result reflects that the Transformer-based model only has the limited advantage in absolute price sequence prediction. The LSTM-based models show better and more robust performance on difference sequence prediction, such as price difference and price movement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
漫漫完成签到,获得积分10
刚刚
英姑应助高贵的如曼采纳,获得10
刚刚
刚刚
斯文的馒头完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
桐桐应助欢欢采纳,获得30
1秒前
cablebot发布了新的文献求助10
2秒前
梦会故乡发布了新的文献求助10
2秒前
niNe3YUE应助结实的XMZ采纳,获得10
2秒前
科目三应助mlx采纳,获得10
2秒前
gstaihn发布了新的文献求助10
3秒前
zhihaiyu完成签到,获得积分10
3秒前
尘晨发布了新的文献求助10
4秒前
刘英岑发布了新的文献求助10
4秒前
smottom应助小贱采纳,获得10
4秒前
踏雾发布了新的文献求助10
4秒前
5秒前
5秒前
NAWAZ完成签到,获得积分20
5秒前
5秒前
6秒前
Cruella完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Joshua完成签到,获得积分10
6秒前
科研通AI6应助65164采纳,获得30
7秒前
搜集达人应助科研白采纳,获得10
7秒前
Amo完成签到,获得积分10
7秒前
FashionBoy应助活泼听露采纳,获得20
7秒前
pragmatic完成签到,获得积分10
7秒前
xx完成签到 ,获得积分10
7秒前
浮名半生发布了新的文献求助10
7秒前
丁浩添发布了新的文献求助10
7秒前
zhihaiyu发布了新的文献求助10
7秒前
7秒前
梦会故乡完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163