模型预测控制
控制理论(社会学)
转换器
模块化设计
二次规划
调制(音乐)
计算机科学
计算复杂性理论
最优控制
控制(管理)
调制指数
二次方程
工程类
数学优化
数学
电压
算法
脉冲宽度调制
人工智能
哲学
几何学
电气工程
操作系统
美学
作者
Xiaonan Gao,Wei Tian,Qifan Yang,Na Chai,José Rodríguez,Ralph Kennel,Marcelo Lobo Heldwein
出处
期刊:IEEE Transactions on Power Electronics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:39 (1): 636-648
被引量:1
标识
DOI:10.1109/tpel.2023.3318320
摘要
Model predictive control (MPC) usually suffers from high computational complexity when it comes to modular multilevel converters (MMCs). Some researchers have attempted to use a modulated approach to reduce the computational burden and improve the control performance. But these methods do not consider the actual physical limitations of the control system, and therefore the control performance degrades at high modulation indices or transients. To solve this problem, a modulated MPC with bound-constrained quadratic programming (QP) has been proposed. With this method, the optimal solution of the control problem can be obtained, ensuring a better control performance under high modulation index conditions or in transients. At last, a comparative experiment with the conventional modulated MPC methods has been carried out. The experimental results validate that the proposed method can achieve superior performance when the MMC operates at high modulation index, transients and low frequencies.
科研通智能强力驱动
Strongly Powered by AbleSci AI