DiffFashion: Reference-Based Fashion Design With Structure-Aware Transfer by Diffusion Models

计算机科学 人工智能 计算机视觉 图像翻译 服装 灵活性(工程) 图像(数学) 光学(聚焦) 统计 物理 数学 考古 光学 历史
作者
Shidong Cao,Wenhao Chai,Shengyu Hao,Yanting Zhang,Hangyue Chen,Gaoang Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3962-3975 被引量:8
标识
DOI:10.1109/tmm.2023.3318297
摘要

Image-based fashion design with AI techniques has attracted increasing attention in recent years. We focus on the reference-based fashion design task, where we aim to combine a reference appearance image and a clothing image to generate a new fashion clothing image. Although existing diffusion-based image translation methods have enabled flexible style transfer, it is often difficult to transfer the appearance of the image realistically during reverse diffusion. When the referenced appearance domain greatly differs from the source domain, it often leads to the collapse in the translation. To tackle this issue, we present a novel diffusion model-based unsupervised structureaware transfer method, namely DiffFashion. Our method is free of model tuning and structure-preserving and has high flexibility in transferring from images with large domain gaps. Specifically, based on the optimal transport properties, we keep a shared latent across the clothing image and reference appearance image to bridge the gap between the two domains in the denoising process, and the latent of the reference image is gradually adapted to the clothing domain. Simultaneously, the structure is transferred from the source clothing to the output fashion image with mixed guidance, including pre-trained Vision Transformer (ViT) guidance and a foreground mask guidance, to further preserve the structure and appearance semantics from source and reference images. Our experimental results show that the proposed method outperforms state-of-the-art baseline models, generating more realistic images in the fashion design task. Code and demo can be found at https://github.com/Rem105- 210/DiffFashion .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
欢喜嘉懿完成签到,获得积分20
2秒前
中和皇极完成签到,获得积分0
2秒前
ddd发布了新的文献求助10
3秒前
爆米花应助肖雪依采纳,获得10
3秒前
余南发布了新的文献求助10
4秒前
木木发布了新的文献求助50
5秒前
Ava应助达克赛德采纳,获得10
7秒前
兴奋的小虾米完成签到,获得积分10
7秒前
7秒前
爆米花应助Alioth采纳,获得10
8秒前
兮兮完成签到,获得积分10
8秒前
ljx完成签到 ,获得积分10
10秒前
10秒前
11秒前
科研通AI2S应助sakura采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
不吃香菜发布了新的文献求助100
12秒前
小药童完成签到 ,获得积分10
13秒前
山丘完成签到,获得积分10
13秒前
14秒前
14秒前
skywalker发布了新的文献求助10
15秒前
骑个柯基完成签到,获得积分10
16秒前
yyfdqms完成签到,获得积分10
17秒前
meat12应助hhh采纳,获得10
18秒前
18秒前
19秒前
20秒前
fujiaxing完成签到,获得积分10
22秒前
田一完成签到,获得积分10
22秒前
22秒前
24秒前
时召展发布了新的文献求助10
25秒前
不吃香菜完成签到,获得积分10
25秒前
桐桐应助mary采纳,获得10
27秒前
上官若男应助gggggd采纳,获得10
28秒前
覃雅丽发布了新的文献求助10
28秒前
dongdadada完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019