亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DiffFashion: Reference-Based Fashion Design With Structure-Aware Transfer by Diffusion Models

计算机科学 人工智能 计算机视觉 图像翻译 服装 灵活性(工程) 图像(数学) 光学(聚焦) 统计 物理 数学 考古 光学 历史
作者
Shidong Cao,Wenhao Chai,Shengyu Hao,Yanting Zhang,Hangyue Chen,Gaoang Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3962-3975 被引量:8
标识
DOI:10.1109/tmm.2023.3318297
摘要

Image-based fashion design with AI techniques has attracted increasing attention in recent years. We focus on the reference-based fashion design task, where we aim to combine a reference appearance image and a clothing image to generate a new fashion clothing image. Although existing diffusion-based image translation methods have enabled flexible style transfer, it is often difficult to transfer the appearance of the image realistically during reverse diffusion. When the referenced appearance domain greatly differs from the source domain, it often leads to the collapse in the translation. To tackle this issue, we present a novel diffusion model-based unsupervised structureaware transfer method, namely DiffFashion. Our method is free of model tuning and structure-preserving and has high flexibility in transferring from images with large domain gaps. Specifically, based on the optimal transport properties, we keep a shared latent across the clothing image and reference appearance image to bridge the gap between the two domains in the denoising process, and the latent of the reference image is gradually adapted to the clothing domain. Simultaneously, the structure is transferred from the source clothing to the output fashion image with mixed guidance, including pre-trained Vision Transformer (ViT) guidance and a foreground mask guidance, to further preserve the structure and appearance semantics from source and reference images. Our experimental results show that the proposed method outperforms state-of-the-art baseline models, generating more realistic images in the fashion design task. Code and demo can be found at https://github.com/Rem105- 210/DiffFashion .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouleiwang举报认真做科研求助涉嫌违规
8秒前
8秒前
司空天德发布了新的文献求助10
12秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
李健应助浮曳采纳,获得10
28秒前
59秒前
1分钟前
1分钟前
1分钟前
Wu发布了新的文献求助10
1分钟前
FUNG发布了新的文献求助10
1分钟前
Wu完成签到,获得积分10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
zhouleiwang完成签到,获得积分10
3分钟前
东方傲儿发布了新的文献求助10
3分钟前
jason完成签到,获得积分10
3分钟前
香蕉觅云应助东方傲儿采纳,获得10
3分钟前
3分钟前
jason发布了新的文献求助10
3分钟前
4分钟前
4分钟前
天天快乐应助mochi采纳,获得10
5分钟前
5分钟前
mochi发布了新的文献求助10
5分钟前
拟好发布了新的文献求助10
7分钟前
arsenal完成签到 ,获得积分10
8分钟前
yang发布了新的文献求助10
9分钟前
领导范儿应助yang采纳,获得10
9分钟前
科研通AI2S应助拟好采纳,获得30
11分钟前
安青兰完成签到 ,获得积分10
12分钟前
12分钟前
赘婿应助mochi采纳,获得10
13分钟前
Qiuyajing完成签到,获得积分10
13分钟前
13分钟前
mochi发布了新的文献求助10
13分钟前
土豪的灵竹完成签到 ,获得积分10
14分钟前
稻子完成签到 ,获得积分10
16分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793574
关于积分的说明 7807032
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328