Atmospheric nanoparticles can serve as nuclei for cloud droplets, thereby inducing significant but uncertain effects on the radiative forcing of the climate system. This article focuses on the physicochemical processes that govern the growth of these particles from formation of molecular clusters until the particles reach sizes where they can act as cloud condensation nuclei. The review describes the latest developments in measurement and modeling of these processes and connects these domains to the large-scale simulations such as Earth system models. The authors recommend closer coordination among laboratory studies, atmospheric measurements, and large-scale modeling to understand the importance of nanoparticles in the climate system.