Photovoltaic efficiency enhancement via magnetism

材料科学 磁性 光伏系统 载流子 光电子学 纳米技术 异质结 凝聚态物理 物理 电气工程 工程类
作者
Monika Verma,Sanjeev Gautam
出处
期刊:Journal of Magnetism and Magnetic Materials [Elsevier BV]
卷期号:588: 171436-171436 被引量:7
标识
DOI:10.1016/j.jmmm.2023.171436
摘要

The efficiency of photovoltaic cells has long been a subject of intense concern and research. Diverse photovoltaic cell types have been developed, including crystalline silicon cells (achieving up to 27.6% efficiency), multijunction cells (reaching up to 47.4% efficiency), thin film cells (attaining up to 23.6% efficiency), and emerging photovoltaic cells (exhibiting up to 33.7% efficiency). Despite advancements, achieving high efficiency on an industrial scale remains a significant challenge due to factors like charge carrier recombination rate, defects, temperature's influence, etc. Numerous approaches have been explored to address these challenges, encompassing strategies such as incorporation of nanoparticle within the active layer, studying transport properties and defects using ion beams, utilizing magnetite materials, and leveraging the application of magnetic fields. The influence of a magnetic field can amplify the generation of charge transfer states exhibiting triplet characteristics, increasing the charge separation time. However, magnetic fields introduce spin-based effects, enabling the investigation of interactions between electron spins and magnetic fields through state-of-an-art synchrotron radiation techniques like XMCD. Several innovative cell configurations have reported substantial efficiency enhancements under the influence of magnetic fields. Examples include TiO2-BiFeO3 dye-sensitized cells, polymer-based cells with Fe3O4@PANI additives integrated into TiO2-based dye-sensitized cells, and the incorporation of Fe-doped SnO2 within the active layer of heterojunction organic solar cells. In this perspective review, the profound impact of magnetism on enhancing efficiency in photovoltaic cells has been analysed and the utilization of advanced X-ray absorption spectroscopic techniques to probe and comprehend these intricate effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助acow采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得30
1秒前
知许解夏应助科研通管家采纳,获得10
1秒前
yznfly应助科研通管家采纳,获得30
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
知许解夏应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
May应助科研通管家采纳,获得10
2秒前
march应助科研通管家采纳,获得60
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
萧水白应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
知许解夏应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
畅通无阻发布了新的文献求助10
4秒前
深情傀斗发布了新的文献求助10
5秒前
5秒前
5秒前
思源应助科研小白采纳,获得10
8秒前
9秒前
小智发布了新的文献求助10
9秒前
糖醋可乐发布了新的文献求助10
10秒前
xxx完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388