Honeypot Detection and Classification Using Xgboost Algorithm for Hyper Tuning System Performance

蜜罐 词汇分析 计算机科学 字节码 分类器(UML) 机器学习 人工智能 数据库事务 通信源 计算机安全 程序设计语言 Java 电信
作者
Vinayak Musale,Pranav Mandke,Debajyoti Mukhopadhyay,Swapnoneel Roy,Aniket Singh
出处
期刊:IFIP advances in information and communication technology 卷期号:: 104-113
标识
DOI:10.1007/978-3-031-45878-1_8
摘要

The purpose of this research paper is to detect and classify the hidden honeypots in Ethereum smart contracts. The novelty of the work is in hypertuning of parameters, which is the unique addition along with classification. Nowadays, blockchain technologies are the grooming technologies. In the current trend, the attackers are implementing a new strategy that is much more proactive. The attackers attempt to dupe the victims by sending seemingly vulnerable contracts containing hidden traps. Such a seemingly vulnerable contract is called a honeypot. This work aims to detect such deployed honeypots. A tool named Honeybadger has been presented. It is a tool that uses symbolic execution to detect honeypots by analyzing contract bytecode. In this system, we consider different cases such as fund movement between the contractor and contract, the transaction between sender and participant, and several other contract features in terms of source code length and compilation information. In the methodology used, the features are then trained and classified using a machine learning algorithm (XGBoost and gradient boosting with hyper tuning) into Balance Disorder, Hidden State Update, Hidden Transfer, Inheritance Disorder, Skip Empty String Literal, Straw Man Contract, Type Deduction Overflow, and Uninitialized Struct. Through this algorithm, we developed a machine-learning model that detects and classifies the hidden honeypots in Ethereum smart contracts. Hypertuning of parameters is the unique addition along with classification that separates the rest of the studies done in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助小六九采纳,获得10
刚刚
2秒前
年轻的翠发布了新的文献求助10
2秒前
2秒前
迷人的长颈鹿应助栗子采纳,获得10
2秒前
梦将军发布了新的文献求助10
2秒前
BareBear应助sz采纳,获得10
2秒前
3秒前
胖飞飞完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助赤壁采纳,获得10
3秒前
嘿嘿应助季博常采纳,获得10
3秒前
羊寄灵发布了新的文献求助10
4秒前
JamesPei应助邹醉蓝采纳,获得10
5秒前
CodeCraft应助MINGMING采纳,获得10
6秒前
Ly完成签到 ,获得积分10
6秒前
万能图书馆应助huangpeihao采纳,获得10
6秒前
秀丽的大门完成签到,获得积分10
6秒前
木尧发布了新的文献求助10
7秒前
海岸发布了新的文献求助10
7秒前
7秒前
甜甜夏青发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Lontano完成签到,获得积分10
8秒前
8秒前
一鸣大人完成签到,获得积分10
9秒前
懒得理完成签到 ,获得积分10
10秒前
可乐发布了新的文献求助10
10秒前
小陈发布了新的文献求助10
11秒前
11秒前
12秒前
Young发布了新的文献求助10
12秒前
12秒前
shanlu完成签到,获得积分10
12秒前
12秒前
曹广秀完成签到,获得积分10
13秒前
香蕉觅云应助syx采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502