Honeypot Detection and Classification Using Xgboost Algorithm for Hyper Tuning System Performance

蜜罐 词汇分析 计算机科学 字节码 分类器(UML) 机器学习 人工智能 数据库事务 通信源 计算机安全 程序设计语言 Java 电信
作者
Vinayak Musale,Pranav Mandke,Debajyoti Mukhopadhyay,Swapnoneel Roy,Aniket Singh
出处
期刊:IFIP advances in information and communication technology 卷期号:: 104-113
标识
DOI:10.1007/978-3-031-45878-1_8
摘要

The purpose of this research paper is to detect and classify the hidden honeypots in Ethereum smart contracts. The novelty of the work is in hypertuning of parameters, which is the unique addition along with classification. Nowadays, blockchain technologies are the grooming technologies. In the current trend, the attackers are implementing a new strategy that is much more proactive. The attackers attempt to dupe the victims by sending seemingly vulnerable contracts containing hidden traps. Such a seemingly vulnerable contract is called a honeypot. This work aims to detect such deployed honeypots. A tool named Honeybadger has been presented. It is a tool that uses symbolic execution to detect honeypots by analyzing contract bytecode. In this system, we consider different cases such as fund movement between the contractor and contract, the transaction between sender and participant, and several other contract features in terms of source code length and compilation information. In the methodology used, the features are then trained and classified using a machine learning algorithm (XGBoost and gradient boosting with hyper tuning) into Balance Disorder, Hidden State Update, Hidden Transfer, Inheritance Disorder, Skip Empty String Literal, Straw Man Contract, Type Deduction Overflow, and Uninitialized Struct. Through this algorithm, we developed a machine-learning model that detects and classifies the hidden honeypots in Ethereum smart contracts. Hypertuning of parameters is the unique addition along with classification that separates the rest of the studies done in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
搜集达人应助hhhh777采纳,获得10
1秒前
BowieHuang应助兴奋冬萱采纳,获得10
1秒前
小二郎应助晒晒采纳,获得10
2秒前
2秒前
3秒前
李浩然完成签到,获得积分10
3秒前
3秒前
ssssss完成签到 ,获得积分10
3秒前
Lucas应助楚明允采纳,获得10
3秒前
小黑妞发布了新的文献求助10
3秒前
3秒前
lacey发布了新的文献求助10
4秒前
wanci应助luo采纳,获得10
4秒前
5秒前
5秒前
5秒前
CodeCraft应助美好稚晴采纳,获得10
5秒前
酷波er应助我不理解采纳,获得10
5秒前
5秒前
lisbattery发布了新的文献求助20
6秒前
6秒前
7秒前
7秒前
orixero应助邓焕然采纳,获得10
7秒前
今后应助活泼宛海采纳,获得10
8秒前
8秒前
卞卞发布了新的文献求助10
8秒前
8秒前
科研通AI6.1应助DONG采纳,获得10
8秒前
CipherSage应助冰勾板勾采纳,获得50
8秒前
科研通AI6.1应助Remember采纳,获得30
8秒前
彭于晏应助luo采纳,获得10
8秒前
酷酷听安发布了新的文献求助10
9秒前
lrh发布了新的文献求助10
9秒前
9秒前
zzh发布了新的文献求助10
10秒前
搜集达人应助小章采纳,获得10
10秒前
yu完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760069
求助须知:如何正确求助?哪些是违规求助? 5523381
关于积分的说明 15396422
捐赠科研通 4896997
什么是DOI,文献DOI怎么找? 2634002
邀请新用户注册赠送积分活动 1582062
关于科研通互助平台的介绍 1537519