AMFLW-YOLO: A Lightweight Network for Remote Sensing Image Detection Based on Attention Mechanism and Multiscale Feature Fusion

计算机科学 特征(语言学) 目标检测 人工智能 特征提取 棱锥(几何) 瓶颈 融合机制 卷积(计算机科学) 模式识别(心理学) 骨干网 计算机视觉 融合 人工神经网络 数学 计算机网络 哲学 语言学 几何学 脂质双层融合 嵌入式系统
作者
Guili Peng,Zijian Yang,Shoubin Wang,Zhou Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:41
标识
DOI:10.1109/tgrs.2023.3327285
摘要

The scale of targets in remote sensing images varies greatly and diversity. It has many small targets which distribute densely, and high complexity of image background. The number of network model parameters and the computation amount of the object detection algorithms based on deep learning is huge. It is difficult to apply them on the platform with fixed performance and limited computing resources. A lightweight remote sensing object detection model is proposed in this paper, which called Attention and Multi-Scale Feature Fusion Lightweight-YOLO (AMFLW-YOLO). The deep separable convolution, inverted residual, and linear bottleneck structure are employed to replace the standard convolution layer to reduce the model parameters in the backbone network of the model. The Coordinate Attention (CA) mechanism is introduced into the feature fusion network to capture the direction-aware and location-aware information across channels at the same time, which improves the accuracy of the network. The Bidirectional Feature Pyramid Network (BiFPN) structure is employed to strengthen feature extraction. The learnable weights are introduced to learn the importance of different input features. The multi-scale feature fusion is applied to improve the detection effect. Experimental results show that the algorithm achieves satisfactory performance in terms of efficiency and accuracy and has advantages in detection accuracy and model lightweight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助小鱼采纳,获得10
刚刚
明理安白发布了新的文献求助50
刚刚
刚刚
1秒前
1秒前
小灰熊发布了新的文献求助10
1秒前
Xhhaai应助errui采纳,获得10
2秒前
DAI完成签到,获得积分20
2秒前
3秒前
风趣飞柏应助milly采纳,获得10
3秒前
anan发布了新的文献求助30
3秒前
故意的书本完成签到 ,获得积分10
3秒前
3秒前
半夏完成签到,获得积分10
3秒前
干净惜蕊发布了新的文献求助10
4秒前
深情安青应助需尽欢采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
落后的哈密瓜应助孙靖博采纳,获得10
4秒前
于予鱼发布了新的文献求助10
5秒前
spp完成签到,获得积分10
5秒前
5秒前
lcj1014发布了新的文献求助10
6秒前
aom完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
番茄炒蛋发布了新的文献求助10
7秒前
8秒前
8秒前
add完成签到,获得积分10
9秒前
9秒前
大导师发布了新的文献求助10
10秒前
10秒前
小鱼发布了新的文献求助10
11秒前
11秒前
大个应助尧章采纳,获得10
11秒前
冷静白亦发布了新的文献求助60
13秒前
14秒前
zz发布了新的文献求助10
14秒前
Jasper应助斯文的绿草采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778591
求助须知:如何正确求助?哪些是违规求助? 5642738
关于积分的说明 15449969
捐赠科研通 4910209
什么是DOI,文献DOI怎么找? 2642534
邀请新用户注册赠送积分活动 1590291
关于科研通互助平台的介绍 1544630