AMFLW-YOLO: A Lightweight Network for Remote Sensing Image Detection Based on Attention Mechanism and Multiscale Feature Fusion

计算机科学 特征(语言学) 目标检测 人工智能 特征提取 棱锥(几何) 瓶颈 融合机制 卷积(计算机科学) 模式识别(心理学) 骨干网 计算机视觉 融合 人工神经网络 数学 计算机网络 哲学 语言学 几何学 脂质双层融合 嵌入式系统
作者
Guili Peng,Zijian Yang,Shoubin Wang,Zhou Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:41
标识
DOI:10.1109/tgrs.2023.3327285
摘要

The scale of targets in remote sensing images varies greatly and diversity. It has many small targets which distribute densely, and high complexity of image background. The number of network model parameters and the computation amount of the object detection algorithms based on deep learning is huge. It is difficult to apply them on the platform with fixed performance and limited computing resources. A lightweight remote sensing object detection model is proposed in this paper, which called Attention and Multi-Scale Feature Fusion Lightweight-YOLO (AMFLW-YOLO). The deep separable convolution, inverted residual, and linear bottleneck structure are employed to replace the standard convolution layer to reduce the model parameters in the backbone network of the model. The Coordinate Attention (CA) mechanism is introduced into the feature fusion network to capture the direction-aware and location-aware information across channels at the same time, which improves the accuracy of the network. The Bidirectional Feature Pyramid Network (BiFPN) structure is employed to strengthen feature extraction. The learnable weights are introduced to learn the importance of different input features. The multi-scale feature fusion is applied to improve the detection effect. Experimental results show that the algorithm achieves satisfactory performance in terms of efficiency and accuracy and has advantages in detection accuracy and model lightweight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
dejavu发布了新的文献求助10
2秒前
2秒前
4秒前
桃七发布了新的文献求助10
4秒前
cactus完成签到 ,获得积分10
4秒前
4秒前
Yimi发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
李里哩发布了新的文献求助10
8秒前
涯光完成签到,获得积分10
8秒前
9秒前
小蘑菇发布了新的文献求助10
10秒前
11秒前
11秒前
oyasimi发布了新的文献求助10
11秒前
11秒前
司空雨筠完成签到,获得积分10
12秒前
12秒前
冷静蜗牛完成签到,获得积分10
13秒前
hrpppp发布了新的文献求助50
13秒前
13秒前
LHTTT发布了新的文献求助10
14秒前
大气的苠发布了新的文献求助10
14秒前
小马甲应助陳.采纳,获得10
15秒前
于豪杰发布了新的文献求助10
16秒前
oyasimi完成签到,获得积分10
16秒前
满意紫丝发布了新的文献求助10
16秒前
16秒前
冯前浪发布了新的文献求助10
17秒前
汉堡包应助Yimi采纳,获得10
17秒前
格拉a发布了新的文献求助10
18秒前
田様应助周繁采纳,获得10
18秒前
烟花应助relax采纳,获得30
18秒前
陈佳完成签到 ,获得积分10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978