AMFLW-YOLO: A Lightweight Network for Remote Sensing Image Detection Based on Attention Mechanism and Multiscale Feature Fusion

计算机科学 特征(语言学) 目标检测 人工智能 特征提取 棱锥(几何) 瓶颈 融合机制 卷积(计算机科学) 模式识别(心理学) 骨干网 计算机视觉 融合 人工神经网络 数学 计算机网络 哲学 语言学 几何学 脂质双层融合 嵌入式系统
作者
Guili Peng,Zijian Yang,Shoubin Wang,Zhou Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:37
标识
DOI:10.1109/tgrs.2023.3327285
摘要

The scale of targets in remote sensing images varies greatly and diversity. It has many small targets which distribute densely, and high complexity of image background. The number of network model parameters and the computation amount of the object detection algorithms based on deep learning is huge. It is difficult to apply them on the platform with fixed performance and limited computing resources. A lightweight remote sensing object detection model is proposed in this paper, which called Attention and Multi-Scale Feature Fusion Lightweight-YOLO (AMFLW-YOLO). The deep separable convolution, inverted residual, and linear bottleneck structure are employed to replace the standard convolution layer to reduce the model parameters in the backbone network of the model. The Coordinate Attention (CA) mechanism is introduced into the feature fusion network to capture the direction-aware and location-aware information across channels at the same time, which improves the accuracy of the network. The Bidirectional Feature Pyramid Network (BiFPN) structure is employed to strengthen feature extraction. The learnable weights are introduced to learn the importance of different input features. The multi-scale feature fusion is applied to improve the detection effect. Experimental results show that the algorithm achieves satisfactory performance in terms of efficiency and accuracy and has advantages in detection accuracy and model lightweight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Reid发布了新的文献求助10
刚刚
橙子发布了新的文献求助10
1秒前
xu应助234445采纳,获得10
1秒前
Owen应助欢呼的初蓝采纳,获得10
1秒前
要减肥书桃完成签到 ,获得积分10
1秒前
完美世界应助姿姿采纳,获得10
2秒前
2秒前
kawai发布了新的文献求助10
2秒前
CJY完成签到,获得积分10
4秒前
英俊的铭应助风清扬采纳,获得10
4秒前
4秒前
chychychy发布了新的文献求助10
4秒前
4秒前
123456完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
和谐青柏应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
280应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
方方土应助科研通管家采纳,获得10
8秒前
和谐青柏应助科研通管家采纳,获得10
8秒前
wlingke应助科研通管家采纳,获得30
8秒前
8秒前
小白应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632327
求助须知:如何正确求助?哪些是违规求助? 4726681
关于积分的说明 14981762
捐赠科研通 4790262
什么是DOI,文献DOI怎么找? 2558238
邀请新用户注册赠送积分活动 1518646
关于科研通互助平台的介绍 1479089