Learning Non-Uniform-Sampling for Ultra-High-Definition Image Enhancement

增采样 计算机科学 采样(信号处理) 过采样 人工智能 计算机视觉 像素 图像分辨率 图像(数学) 过程(计算) 算法 带宽(计算) 计算机网络 滤波器(信号处理) 操作系统
作者
Wei Yu,Qi Zhu,Naishan Zheng,Jie Huang,Man Zhou,Feng Zhao
标识
DOI:10.1145/3581783.3611836
摘要

Ultra-high-definition (UHD) image enhancement is a challenging problem that aims to effectively and efficiently recover clean UHD images. To maintain efficiency, the straightforward approach is to downsample and perform most computations on low-resolution images. However, previous studies typically rely on the uniform and content-agnostic downsampling method that equally treats various regions regardless of their complexities, thus limiting the detail reconstruction in UHD image enhancement. To alleviate this issue, we propose a novel spatial-variant and invertible non-uniform downsampler that adaptively adjusts the sampling rate according to the richness of details. It magnifies important regions to preserve more information (e.g., sparse sampling points for sky, dense sampling points for buildings). Therefore, we propose a novel Non-uniform-Sampling Enhancement Network (NSEN) consisting of two core designs: 1) content-guided downsampling that extracts texture representation to guide the sampler to perform content-aware downsampling for producing detail-preserved low-resolution images; 2) invertible pixel-alignment which remaps the forward sampling process in an iterative manner to eliminate the deformations caused by the non-uniform downsampling, thus producing detail-rich clean UHD images. To demonstrate the superiority of our proposed model, we conduct extensive experiments on various UHD enhancement tasks. The results show that the proposed NSEN yields better performance against other state-of-the-art methods both visually and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘟嘟发布了新的文献求助10
刚刚
1秒前
苏照杭应助jym采纳,获得10
1秒前
1秒前
1秒前
眼睛大又蓝完成签到,获得积分10
1秒前
kangkang完成签到,获得积分10
1秒前
2秒前
2秒前
绵绵完成签到,获得积分10
2秒前
3秒前
Mlwwq完成签到,获得积分10
3秒前
3秒前
小皮蛋儿完成签到,获得积分10
3秒前
lyn发布了新的文献求助10
3秒前
JUSTs0so完成签到,获得积分10
4秒前
失联者完成签到,获得积分10
4秒前
感性的神级完成签到,获得积分10
4秒前
眯眯眼的谷冬完成签到 ,获得积分10
4秒前
4秒前
花莫凋零发布了新的文献求助10
5秒前
szh123完成签到,获得积分10
5秒前
5秒前
安息香发布了新的文献求助10
5秒前
核桃完成签到,获得积分10
5秒前
丹dan发布了新的文献求助10
5秒前
5秒前
科研通AI5应助大方嵩采纳,获得10
6秒前
6秒前
HYG发布了新的文献求助30
6秒前
6秒前
宝贝发布了新的文献求助10
6秒前
FashionBoy应助tulip采纳,获得10
6秒前
万泉部诗人完成签到,获得积分10
7秒前
文静千愁发布了新的文献求助10
7秒前
YAN发布了新的文献求助10
7秒前
马洛发布了新的文献求助10
7秒前
7秒前
qiqi完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762