Learning Non-Uniform-Sampling for Ultra-High-Definition Image Enhancement

增采样 计算机科学 采样(信号处理) 过采样 人工智能 计算机视觉 像素 图像分辨率 图像(数学) 过程(计算) 算法 带宽(计算) 计算机网络 滤波器(信号处理) 操作系统
作者
Wei Yu,Qi Zhu,Naishan Zheng,Jie Huang,Man Zhou,Feng Zhao
标识
DOI:10.1145/3581783.3611836
摘要

Ultra-high-definition (UHD) image enhancement is a challenging problem that aims to effectively and efficiently recover clean UHD images. To maintain efficiency, the straightforward approach is to downsample and perform most computations on low-resolution images. However, previous studies typically rely on the uniform and content-agnostic downsampling method that equally treats various regions regardless of their complexities, thus limiting the detail reconstruction in UHD image enhancement. To alleviate this issue, we propose a novel spatial-variant and invertible non-uniform downsampler that adaptively adjusts the sampling rate according to the richness of details. It magnifies important regions to preserve more information (e.g., sparse sampling points for sky, dense sampling points for buildings). Therefore, we propose a novel Non-uniform-Sampling Enhancement Network (NSEN) consisting of two core designs: 1) content-guided downsampling that extracts texture representation to guide the sampler to perform content-aware downsampling for producing detail-preserved low-resolution images; 2) invertible pixel-alignment which remaps the forward sampling process in an iterative manner to eliminate the deformations caused by the non-uniform downsampling, thus producing detail-rich clean UHD images. To demonstrate the superiority of our proposed model, we conduct extensive experiments on various UHD enhancement tasks. The results show that the proposed NSEN yields better performance against other state-of-the-art methods both visually and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得30
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
JJ发布了新的文献求助10
3秒前
Nugget发布了新的文献求助10
3秒前
邓紫依发布了新的文献求助10
3秒前
4秒前
4秒前
直率的问筠完成签到,获得积分10
5秒前
不发SCI不改名完成签到,获得积分10
5秒前
6秒前
7秒前
柯睿渊完成签到,获得积分10
7秒前
独特乘云完成签到,获得积分10
7秒前
贾克斯发布了新的文献求助10
7秒前
tlh完成签到 ,获得积分10
8秒前
陈彦滨完成签到 ,获得积分10
8秒前
9秒前
11秒前
11秒前
css完成签到,获得积分10
11秒前
Liufgui应助Re采纳,获得20
11秒前
Nugget完成签到,获得积分10
11秒前
yar应助潇湘雪月采纳,获得10
12秒前
宇宇发布了新的文献求助10
12秒前
shufessm完成签到,获得积分0
14秒前
14秒前
18秒前
幸福大白发布了新的文献求助30
18秒前
19秒前
肿瘤柳叶刀完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174