Learning Non-Uniform-Sampling for Ultra-High-Definition Image Enhancement

增采样 计算机科学 采样(信号处理) 过采样 人工智能 计算机视觉 像素 图像分辨率 图像(数学) 过程(计算) 算法 带宽(计算) 计算机网络 滤波器(信号处理) 操作系统
作者
Wei Yu,Qi Zhu,Naishan Zheng,Jie Huang,Man Zhou,Feng Zhao
标识
DOI:10.1145/3581783.3611836
摘要

Ultra-high-definition (UHD) image enhancement is a challenging problem that aims to effectively and efficiently recover clean UHD images. To maintain efficiency, the straightforward approach is to downsample and perform most computations on low-resolution images. However, previous studies typically rely on the uniform and content-agnostic downsampling method that equally treats various regions regardless of their complexities, thus limiting the detail reconstruction in UHD image enhancement. To alleviate this issue, we propose a novel spatial-variant and invertible non-uniform downsampler that adaptively adjusts the sampling rate according to the richness of details. It magnifies important regions to preserve more information (e.g., sparse sampling points for sky, dense sampling points for buildings). Therefore, we propose a novel Non-uniform-Sampling Enhancement Network (NSEN) consisting of two core designs: 1) content-guided downsampling that extracts texture representation to guide the sampler to perform content-aware downsampling for producing detail-preserved low-resolution images; 2) invertible pixel-alignment which remaps the forward sampling process in an iterative manner to eliminate the deformations caused by the non-uniform downsampling, thus producing detail-rich clean UHD images. To demonstrate the superiority of our proposed model, we conduct extensive experiments on various UHD enhancement tasks. The results show that the proposed NSEN yields better performance against other state-of-the-art methods both visually and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Livrik完成签到,获得积分10
3秒前
小猴子关注了科研通微信公众号
3秒前
阿Q完成签到,获得积分10
4秒前
yujd完成签到,获得积分10
4秒前
鹿仪发布了新的文献求助10
4秒前
4秒前
4秒前
Orange应助好宝宝采纳,获得10
6秒前
6秒前
GL发布了新的文献求助10
7秒前
7秒前
李健应助年轻的烨华采纳,获得10
9秒前
Jasper应助zhugepengju采纳,获得10
9秒前
10秒前
酢浆草小熊完成签到 ,获得积分10
10秒前
沈昊泽完成签到,获得积分10
13秒前
陈浩发布了新的文献求助10
13秒前
14秒前
春眠不觉小小酥完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
wwb完成签到,获得积分10
17秒前
在水一方应助meimale采纳,获得10
18秒前
星晴遇见花海完成签到 ,获得积分10
19秒前
19秒前
19秒前
赘婿应助lize5493采纳,获得10
20秒前
21秒前
JamesPei应助liu采纳,获得10
21秒前
冇_发布了新的文献求助10
22秒前
李爱国应助黑猫采纳,获得10
22秒前
zhugepengju发布了新的文献求助10
22秒前
汪汪发布了新的文献求助10
22秒前
Ava应助向阳而生o采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035