DAWN: Direction-aware Attention Wavelet Network for Image Deraining

小波 计算机科学 人工智能 小波变换 计算机视觉 模式识别(心理学) 转化(遗传学) 嵌入 图像(数学) 图像复原 代表(政治) 图像处理 化学 政治 政治学 法学 基因 生物化学
作者
Kui Jiang,Wenxuan Liu,Zheng Wang,Xian Zhong,Junjun Jiang,Chia‐Wen Lin
标识
DOI:10.1145/3581783.3611697
摘要

Single image deraining aims to remove rain perturbation while restoring the clean background scene from a rain image. However, existing methods tend to produce blurry and over-smooth outputs, lacking some textural details. Wavelet transform can depict the contextual and textural information of an image at different levels, showing impressive capability of learning structural information in the images to avoid artifacts, and thus has been recently explored to consider the inherent overlap of background and rain perturbation in both the pixel domain and the frequency embedding space. However, the existing wavelet-based methods ignore the heterogeneous degradation for different coefficients due to the inherent directional characteristics of rain streaks, leading to inter-frequency conflicts and compromised deraining results. To address this issue, we propose a novel Direction-aware Attention Wavelet Network (DAWN) for rain streaks removal. DAWN has several key distinctions from existing wavelet transform-based methods: 1) introducing the vector decomposition to parameterize the learning procedure, where the rain streaks are derived into the vertical (V) and horizontal (H) components to learn the specific representation; 2) a novel direction-aware attention module (DAM) to fit the projection and transformation parameters to characterize the direction-specific rain components, which helps accurate texture restoration; 3) exploring practical composite constraints on the structure, details, and chrominance aspects for high-quality background restoration. Our proposed DAWN delivers significant performance gains on nine datasets across image deraining and object detection tasks, exceeding the state-of-the-art method MPRNet by 0.88 dB in PSNR on the Test1200 dataset with only 35.5% computation cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新芝完成签到,获得积分10
1秒前
蕊蕊蕊完成签到 ,获得积分10
2秒前
上官若男应助lan采纳,获得10
2秒前
劲秉应助高贵的惠采纳,获得30
3秒前
着急的cc发布了新的文献求助10
4秒前
5秒前
斯文败类应助lll采纳,获得30
5秒前
Ava应助愉快雨真采纳,获得10
5秒前
烟花应助一个可爱玉采纳,获得10
6秒前
x1发布了新的文献求助20
7秒前
8秒前
linda627发布了新的文献求助10
10秒前
10秒前
kkk发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
邓海霞发布了新的文献求助30
12秒前
追寻平文完成签到 ,获得积分10
14秒前
大橙子发布了新的文献求助10
14秒前
15秒前
张张发布了新的文献求助10
15秒前
dfsdf完成签到,获得积分10
15秒前
15秒前
orixero应助xcx采纳,获得10
15秒前
16秒前
linlin应助巧语采纳,获得50
17秒前
深情安青应助feilong采纳,获得10
18秒前
19秒前
19秒前
19秒前
still发布了新的文献求助10
21秒前
英俊的凡梅完成签到,获得积分20
21秒前
22秒前
22秒前
廉凌波完成签到,获得积分10
23秒前
大力沛萍发布了新的文献求助10
23秒前
23秒前
Yuan应助x1采纳,获得10
24秒前
张张完成签到,获得积分20
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465285
求助须知:如何正确求助?哪些是违规求助? 3058476
关于积分的说明 9061679
捐赠科研通 2748770
什么是DOI,文献DOI怎么找? 1508120
科研通“疑难数据库(出版商)”最低求助积分说明 696783
邀请新用户注册赠送积分活动 696467