Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements

可穿戴计算机 超声波 生物医学工程 工件(错误) 金标准(测试) 医学 计算机科学 基本事实 体积热力学 放射科 人工智能 物理 量子力学 嵌入式系统
作者
Kanika Dheman,Stefan Walser,Philipp Mayer,Manuel Eggimann,Marko Kozomara,Denise Franke,Thomas Hermanns,Hugo Sax,Simone Schürle,Michele Magno
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (2): 1633-1643 被引量:3
标识
DOI:10.1109/jsen.2023.3324819
摘要

Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ( ${n}$ – 6) and uroflowmetry tests ( ${n}$ – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was $-29\,\,\pm $ 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助念所三旬采纳,获得10
1秒前
许子健完成签到,获得积分10
1秒前
SciGPT应助徐昊雯采纳,获得10
1秒前
乐乐应助跨材料采纳,获得10
1秒前
1秒前
科研通AI5应助安详小丸子采纳,获得10
2秒前
十一号发布了新的文献求助10
2秒前
2秒前
shin完成签到,获得积分10
2秒前
霜之哀伤完成签到,获得积分10
2秒前
hersy发布了新的文献求助10
2秒前
李家龙发布了新的文献求助10
2秒前
hongdongxiang发布了新的文献求助10
3秒前
署前街少年完成签到,获得积分10
3秒前
3秒前
tuzi2160完成签到,获得积分10
3秒前
3秒前
Akim应助miaomiao采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
李旭东发布了新的文献求助20
4秒前
刘小白完成签到,获得积分10
5秒前
5秒前
6秒前
乐乐应助噜噜晓采纳,获得10
6秒前
静心404发布了新的文献求助10
7秒前
付大威发布了新的文献求助20
7秒前
Orange应助tuzi2160采纳,获得10
7秒前
7秒前
我是老大应助安静的难破采纳,获得10
7秒前
zimo发布了新的文献求助10
7秒前
8秒前
鲸鱼发布了新的文献求助10
8秒前
传奇3应助tosania采纳,获得10
8秒前
8秒前
8秒前
8秒前
我迷了鹿发布了新的文献求助10
8秒前
ff完成签到,获得积分10
9秒前
活泼又晴完成签到,获得积分10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646