Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements

可穿戴计算机 超声波 生物医学工程 工件(错误) 金标准(测试) 医学 计算机科学 基本事实 体积热力学 放射科 人工智能 物理 量子力学 嵌入式系统
作者
Kanika Dheman,Stefan Walser,Philipp Mayer,Manuel Eggimann,Marko Kozomara,Denise Franke,Thomas Hermanns,Hugo Sax,Simone Schürle,Michele Magno
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (2): 1633-1643 被引量:3
标识
DOI:10.1109/jsen.2023.3324819
摘要

Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ( ${n}$ – 6) and uroflowmetry tests ( ${n}$ – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was $-29\,\,\pm $ 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到,获得积分10
刚刚
1秒前
生椰拿铁不加生椰完成签到 ,获得积分10
2秒前
认真的灵竹完成签到 ,获得积分10
3秒前
Zxx关注了科研通微信公众号
4秒前
4秒前
franca2005完成签到 ,获得积分10
4秒前
本末倒纸完成签到 ,获得积分10
6秒前
wbscz应助星辰采纳,获得10
6秒前
toxikon发布了新的文献求助10
7秒前
8秒前
10秒前
大模型应助剁辣椒蒸鱼头采纳,获得20
10秒前
小北完成签到 ,获得积分10
10秒前
11秒前
高挑的冰露完成签到 ,获得积分10
14秒前
ruochenzu发布了新的文献求助10
14秒前
老李完成签到,获得积分10
14秒前
15秒前
16秒前
tough_cookie完成签到 ,获得积分10
17秒前
彩钢房完成签到,获得积分10
18秒前
MeSs完成签到 ,获得积分10
19秒前
toxikon完成签到,获得积分10
20秒前
一点通完成签到,获得积分10
20秒前
Lei完成签到,获得积分10
21秒前
21秒前
21秒前
常若冰完成签到,获得积分10
21秒前
纯真的元风完成签到,获得积分10
22秒前
哇哈哈哈完成签到,获得积分10
22秒前
清秋1001完成签到 ,获得积分10
23秒前
qq完成签到,获得积分10
24秒前
荒野风发布了新的文献求助10
25秒前
Zxx发布了新的文献求助10
26秒前
27秒前
27秒前
确幸完成签到 ,获得积分10
27秒前
苒苒完成签到,获得积分10
27秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066