Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements

可穿戴计算机 超声波 生物医学工程 工件(错误) 金标准(测试) 医学 计算机科学 基本事实 体积热力学 放射科 人工智能 物理 量子力学 嵌入式系统
作者
Kanika Dheman,Stefan Walser,Philipp Mayer,Manuel Eggimann,Marko Kozomara,Denise Franke,Thomas Hermanns,Hugo Sax,Simone Schürle,Michele Magno
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 1633-1643 被引量:3
标识
DOI:10.1109/jsen.2023.3324819
摘要

Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ( ${n}$ – 6) and uroflowmetry tests ( ${n}$ – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was $-29\,\,\pm $ 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜青发布了新的文献求助10
刚刚
1秒前
1秒前
果果发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
yhy完成签到,获得积分10
3秒前
4秒前
迅速夏波完成签到,获得积分20
4秒前
5秒前
神勇冰淇淋完成签到,获得积分10
5秒前
orixero应助细心的岩采纳,获得10
6秒前
6秒前
thomas发布了新的文献求助10
7秒前
唐艺发布了新的文献求助10
7秒前
隐形曼青应助wang采纳,获得10
7秒前
张姣姣完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
ding应助贝利亚采纳,获得10
10秒前
generaliu发布了新的文献求助10
10秒前
qiu完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
舒适曼云完成签到,获得积分10
11秒前
玲子7发布了新的文献求助50
12秒前
13秒前
爱我不上火给爱我不上火的求助进行了留言
14秒前
高斯发布了新的文献求助10
14秒前
舒适曼云发布了新的文献求助10
15秒前
Owen应助qiu采纳,获得10
15秒前
Hathaway发布了新的文献求助10
16秒前
16秒前
迅速夏波发布了新的文献求助10
16秒前
17秒前
17秒前
思源应助爱意采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788