Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements

可穿戴计算机 超声波 生物医学工程 工件(错误) 金标准(测试) 医学 计算机科学 基本事实 体积热力学 放射科 人工智能 物理 量子力学 嵌入式系统
作者
Kanika Dheman,Stefan Walser,Philipp Mayer,Manuel Eggimann,Marko Kozomara,Denise Franke,Thomas Hermanns,Hugo Sax,Simone Schürle,Michele Magno
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 1633-1643 被引量:3
标识
DOI:10.1109/jsen.2023.3324819
摘要

Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ( ${n}$ – 6) and uroflowmetry tests ( ${n}$ – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was $-29\,\,\pm $ 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助TOMMY233采纳,获得10
刚刚
1秒前
zz发布了新的文献求助10
1秒前
2秒前
幽默香旋完成签到,获得积分10
3秒前
algarhythm完成签到,获得积分10
4秒前
Kum2完成签到 ,获得积分10
5秒前
xiaofutongxue完成签到,获得积分10
5秒前
LM879发布了新的文献求助10
7秒前
8秒前
dandan发布了新的文献求助10
8秒前
其7完成签到,获得积分10
8秒前
科研通AI5应助干净初彤采纳,获得10
9秒前
平淡的灰阶完成签到,获得积分10
9秒前
香芋举报暮渔求助涉嫌违规
10秒前
SL驳回了lyh应助
11秒前
研友_VZG7GZ应助222采纳,获得10
12秒前
幽默觅翠完成签到,获得积分10
12秒前
随性发布了新的文献求助10
14秒前
14秒前
完美世界应助啦啦啦采纳,获得10
15秒前
16秒前
十一完成签到 ,获得积分10
19秒前
我是老大应助dandan采纳,获得10
19秒前
19秒前
20秒前
J.完成签到,获得积分10
21秒前
干净初彤发布了新的文献求助10
24秒前
25秒前
25秒前
星辰大海应助J.采纳,获得20
26秒前
科目三应助缓慢的凝云采纳,获得10
26秒前
ZHI发布了新的文献求助50
26秒前
孙行行发布了新的文献求助10
26秒前
啦啦啦完成签到,获得积分10
27秒前
孤独患者完成签到,获得积分10
27秒前
27秒前
29秒前
烟花应助4kerzz采纳,获得10
29秒前
顾矜应助文献狂人采纳,获得10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880