Extracting symptoms from free-text responses using ChatGPT among COVID-19 cases in Hong Kong

2019年冠状病毒病(COVID-19) 匹配(统计) 医学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 听力学 自然语言处理 疾病 内科学 计算机科学 病理 传染病(医学专业)
作者
Wan In Wei,Cyrus Lap Kwan Leung,Arthur Tang,Edward Braddon McNeil,Samuel Yeung Shan Wong,Kin On Kwok
出处
期刊:Clinical Microbiology and Infection [Elsevier]
卷期号:30 (1): 142.e1-142.e3 被引量:9
标识
DOI:10.1016/j.cmi.2023.11.002
摘要

Abstract

Objectives

To investigate the feasibility and performance of Chat Generative Pretrained Transformer (ChatGPT) in converting symptom narratives into structured symptom labels.

Methods

We extracted symptoms from 300 deidentified symptom narratives of COVID-19 patients by a computer-based matching algorithm (the standard), and prompt engineering in ChatGPT. Common symptoms were those with a prevalence >10% according to the standard, and similarly less common symptoms were those with a prevalence of 2–10%. The precision of ChatGPT was compared with the standard using sensitivity and specificity with 95% exact binomial CIs (95% binCIs). In ChatGPT, we prompted without examples (zero-shot prompting) and with examples (few-shot prompting).

Results

In zero-shot prompting, GPT-4 achieved high specificity (0.947 [95% binCI: 0.894–0.978]—1.000 [95% binCI: 0.965–0.988, 1.000]) for all symptoms, high sensitivity for common symptoms (0.853 [95% binCI: 0.689–0.950]—1.000 [95% binCI: 0.951–1.000]), and moderate sensitivity for less common symptoms (0.200 [95% binCI: 0.043–0.481]—1.000 [95% binCI: 0.590–0.815, 1.000]). Few-shot prompting increased the sensitivity and specificity. GPT-4 outperformed GPT-3.5 in response accuracy and consistent labelling.

Discussion

This work substantiates ChatGPT's role as a research tool in medical fields. Its performance in converting symptom narratives to structured symptom labels was encouraging, saving time and effort in compiling the task-specific training data. It potentially accelerates free-text data compilation and synthesis in future disease outbreaks and improves the accuracy of symptom checkers. Focused prompt training addressing ambiguous descriptions impacts medical research positively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助邓娅琴采纳,获得100
刚刚
大白发布了新的文献求助10
刚刚
宋达发布了新的文献求助10
1秒前
慕青应助高大的易蓉采纳,获得10
1秒前
1秒前
kajimi完成签到,获得积分10
2秒前
2秒前
如意的雨琴完成签到 ,获得积分10
2秒前
3秒前
汉堡包应助想发sci采纳,获得10
3秒前
3秒前
张利双完成签到,获得积分10
4秒前
小王啵啵完成签到 ,获得积分10
4秒前
柚子茶茶茶完成签到,获得积分20
4秒前
科研通AI2S应助3ilence采纳,获得10
5秒前
浮游应助3ilence采纳,获得10
5秒前
科研通AI6应助lanchong采纳,获得10
5秒前
浮游应助FG采纳,获得10
6秒前
含蓄觅山完成签到 ,获得积分10
6秒前
江霭完成签到,获得积分10
7秒前
7秒前
7秒前
彭桢完成签到,获得积分10
7秒前
ppsweek发布了新的文献求助10
7秒前
7秒前
杨松发布了新的文献求助10
8秒前
如意的雨琴关注了科研通微信公众号
8秒前
椰子卷发布了新的文献求助10
8秒前
柒景景发布了新的文献求助10
8秒前
我是鸡汤完成签到,获得积分10
8秒前
顺心的觅荷完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
lll完成签到,获得积分20
10秒前
10秒前
myf完成签到 ,获得积分10
10秒前
11秒前
wjx发布了新的文献求助10
11秒前
11秒前
科研通AI6应助杨松采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745