Extracting symptoms from free-text responses using ChatGPT among COVID-19 cases in Hong Kong

2019年冠状病毒病(COVID-19) 匹配(统计) 医学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 听力学 自然语言处理 疾病 内科学 计算机科学 病理 传染病(医学专业)
作者
Wan In Wei,Cyrus Lap Kwan Leung,Arthur Tang,Edward Braddon McNeil,Samuel Yeung Shan Wong,Kin On Kwok
出处
期刊:Clinical Microbiology and Infection [Elsevier]
卷期号:30 (1): 142.e1-142.e3 被引量:9
标识
DOI:10.1016/j.cmi.2023.11.002
摘要

Abstract

Objectives

To investigate the feasibility and performance of Chat Generative Pretrained Transformer (ChatGPT) in converting symptom narratives into structured symptom labels.

Methods

We extracted symptoms from 300 deidentified symptom narratives of COVID-19 patients by a computer-based matching algorithm (the standard), and prompt engineering in ChatGPT. Common symptoms were those with a prevalence >10% according to the standard, and similarly less common symptoms were those with a prevalence of 2–10%. The precision of ChatGPT was compared with the standard using sensitivity and specificity with 95% exact binomial CIs (95% binCIs). In ChatGPT, we prompted without examples (zero-shot prompting) and with examples (few-shot prompting).

Results

In zero-shot prompting, GPT-4 achieved high specificity (0.947 [95% binCI: 0.894–0.978]—1.000 [95% binCI: 0.965–0.988, 1.000]) for all symptoms, high sensitivity for common symptoms (0.853 [95% binCI: 0.689–0.950]—1.000 [95% binCI: 0.951–1.000]), and moderate sensitivity for less common symptoms (0.200 [95% binCI: 0.043–0.481]—1.000 [95% binCI: 0.590–0.815, 1.000]). Few-shot prompting increased the sensitivity and specificity. GPT-4 outperformed GPT-3.5 in response accuracy and consistent labelling.

Discussion

This work substantiates ChatGPT's role as a research tool in medical fields. Its performance in converting symptom narratives to structured symptom labels was encouraging, saving time and effort in compiling the task-specific training data. It potentially accelerates free-text data compilation and synthesis in future disease outbreaks and improves the accuracy of symptom checkers. Focused prompt training addressing ambiguous descriptions impacts medical research positively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
桥豆麻袋完成签到,获得积分10
3秒前
beforethedawn完成签到,获得积分10
3秒前
南风完成签到 ,获得积分10
8秒前
麦克烯完成签到 ,获得积分10
9秒前
安然完成签到 ,获得积分10
11秒前
13秒前
量子星尘发布了新的文献求助10
19秒前
辣小扬完成签到 ,获得积分10
24秒前
film完成签到 ,获得积分10
30秒前
枫糖叶落完成签到,获得积分10
31秒前
清爽的鱼完成签到,获得积分10
32秒前
害羞的雁易完成签到 ,获得积分10
37秒前
特特雷珀萨努完成签到 ,获得积分10
38秒前
Owen应助科研顺路采纳,获得10
39秒前
从容谷菱完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
游01完成签到 ,获得积分0
42秒前
42秒前
45秒前
O_O完成签到 ,获得积分10
46秒前
paulhsy完成签到 ,获得积分10
46秒前
Moonchild完成签到 ,获得积分10
48秒前
Mr.Ren发布了新的文献求助10
49秒前
科研顺路发布了新的文献求助10
51秒前
ChemHu完成签到,获得积分10
51秒前
静静完成签到 ,获得积分10
52秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
53秒前
53秒前
53秒前
chiazy完成签到,获得积分10
53秒前
乐乐应助科研通管家采纳,获得10
53秒前
BowieHuang应助科研通管家采纳,获得10
53秒前
53秒前
53秒前
53秒前
arniu2008应助科研通管家采纳,获得10
53秒前
CipherSage应助科研通管家采纳,获得10
53秒前
丘比特应助科研通管家采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789405
求助须知:如何正确求助?哪些是违规求助? 5719281
关于积分的说明 15474586
捐赠科研通 4917240
什么是DOI,文献DOI怎么找? 2646854
邀请新用户注册赠送积分活动 1594496
关于科研通互助平台的介绍 1549019