Selecting the ideal sustainable green strategy for logistics companies using a T-spherical fuzzy-based methodology

绿色物流 激励 可再生能源 环境经济学 可持续发展 业务 可持续经营 社会责任 政府(语言学) 加权 模糊逻辑 计算机科学 过程管理 持续性 经济 人工智能 医学 生态学 语言学 哲学 放射科 政治学 法学 电气工程 生物 微观经济学 工程类
作者
Ahmet Ayteki̇n,Selçuk Korucuk,Şule Bayazit Bedirhanoğlu,Vladimir Šimić
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107347-107347
标识
DOI:10.1016/j.engappai.2023.107347
摘要

Governments, institutions, and organizations focused on renewable and green energy problems have provided significant support and incentives for project development in recent years. Green transformation is fostered through environmentally friendly and clean energy practices, which are the key to a sustainable future for the entire world, and governments and enterprises shape their business and transactions within this framework. However, there are various challenges and obstacles in green energy applications, both in businesses and in government policies. The study, which focuses on green energy problems, seeks to connect energy with sustainable business strategies. Furthermore, because businesses are often concerned with social and environmental implications, it is believed that implementing a sustainable energy strategy will give long-term benefits to businesses. In this regard, this study aims to identify green energy problems in logistics companies and to select the best sustainable strategy. The hybrid T-spherical fuzzy (T-SF) methodology is introduced to solve the problem, including T–SF–subjective weighting, T–SF–criteria importance through intercriteria correlation (CRITIC), subjective and objective weight integrated approach (SOWIA), and T–SF–additive ratio assessment system (ARAS). According to the results, the most important green energy factor in logistics companies is determined as “energy security”. The best sustainable strategy is identified as the “socially beneficial services supply strategy”. The relevant results are critical for guiding companies, users, and stakeholders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晁子枫完成签到 ,获得积分10
刚刚
biubiuxue发布了新的文献求助10
刚刚
Singularity应助自行者采纳,获得10
1秒前
1秒前
共享精神应助xxx采纳,获得10
1秒前
学术彦祖发布了新的文献求助10
1秒前
打小老虎完成签到,获得积分10
2秒前
Owen应助白踏歌采纳,获得30
3秒前
3秒前
上官若男应助钱多多采纳,获得10
4秒前
感动期待发布了新的文献求助10
4秒前
6秒前
小小冰发布了新的文献求助10
7秒前
7秒前
7秒前
嘉心糖应助yyyy采纳,获得20
8秒前
猫见愁发布了新的文献求助10
8秒前
学术彦祖完成签到,获得积分10
8秒前
10秒前
swan发布了新的文献求助10
10秒前
ll应助瑾玉采纳,获得10
10秒前
坦率雪萍发布了新的文献求助10
10秒前
za==发布了新的文献求助10
10秒前
英姑应助tracer采纳,获得10
12秒前
13秒前
字符串完成签到,获得积分10
13秒前
D.Z发布了新的文献求助10
13秒前
裴仰纳完成签到,获得积分10
14秒前
14秒前
阿杜阿杜发布了新的文献求助10
14秒前
Licht-ma发布了新的文献求助10
15秒前
钱多多发布了新的文献求助10
18秒前
PlanB应助125采纳,获得20
19秒前
21秒前
23秒前
23秒前
bigash完成签到,获得积分10
24秒前
24秒前
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945