许可证
计算机科学
卷积神经网络
人工智能
探测器
模式识别(心理学)
编码(集合论)
相似性(几何)
数据挖掘
机器学习
图像(数学)
电信
操作系统
集合(抽象数据类型)
程序设计语言
作者
Chunwei Tian,Xuanyu Zhang,Liang Xu,Bo Li,Yougang Sun,Shichao Zhang
出处
期刊:IEEE transactions on intelligent vehicles
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:: 1-7
标识
DOI:10.1109/tiv.2023.3330164
摘要
Deep convolutional neural networks (CNNs) can improve recognition rate in license plate to improve traffic. However, these methods may refer to big computational costs and a lot of parameters. In this paper, we propose a knowledge distillation with a fast CNN for license plate detection (KDNet). KDNet uses knowledge distillation to guide a CNN to optimize parameters and quickly obtain a detector for license plate. To overcome naive effect of local information, a non-local similarity mechanism is used into a CNN to enhance effect of global information for extracting salient information in license plate detection. Experimental results that this proposed KDNet is superior to detection speed for license plate. The code of KDNet can be obtained at https://github.com/hellloxiaotian/KDNet .
科研通智能强力驱动
Strongly Powered by AbleSci AI