An extended combined compromise solution framework based on novel intuitionistic fuzzy distance measure and score function with applications in sustainable biomass crop selection

加权 计算机科学 规范化(社会学) 度量(数据仓库) 选择(遗传算法) 数学优化 模糊逻辑 数据挖掘 人工智能 数学 医学 社会学 人类学 放射科
作者
Rakesh Kumar,Satish Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122345-122345 被引量:6
标识
DOI:10.1016/j.eswa.2023.122345
摘要

Now-a-days, due to the increasing demand of the energy resources across the world, choosing the best sustainable biomass crop for the production of biofuels is a strategic decision-making problem. This is generally accepted that intuitionistic fuzzy sets (IFSs) are much more efficient in comparison with fuzzy sets at representing and processing the uncertainty in real-life problems. Proceeding on the same line, this paper attempts to introduce an extended combined compromise solution (CoCoSo) framework to analyze the sustainable biomass crop selection (SBCS) problem in an intuitionistic fuzzy environment. In this framework, we suggest a new integration function based on double normalization multiple aggregation approach to overcome the aggregation biases of the original CoCoSo approach and discuss its advantages with some numerical examples. We also develop a combined weighting strategy based on distance measure and decision experts’ (DEs) opinions to evaluate the significance of criteria . For this, we propose a novel distance measure (DM) and establish its superiority through some numerical comparisons. Also, the rationality of the suggested measure over the extant measures is justified by the use of an algorithm based on the developed measure for pattern recognition issues. In this framework, the comparison issue of IFSs is resolved by proposing a new score function. Furthermore, a case study of the SBCS is presented for the implementation of the developed CoCoSo approach, which confirms the viability and effectiveness of the new methodology. The results of the sensitivity analysis demonstrate that option “Miscanthus” consistently achieves the highest rank and is independent of variations of trade-off parameter and balancing factor. Finally, a comprehensive comparison is carried out to ensure the steadiness and reliability of the introduced framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serein应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
Hanoi347应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Z小姐发布了新的文献求助30
2秒前
3秒前
827584450发布了新的文献求助30
3秒前
111关闭了111文献求助
3秒前
纯真乐儿完成签到 ,获得积分10
4秒前
夕荀发布了新的文献求助10
4秒前
结实的凝天完成签到,获得积分10
4秒前
5秒前
5秒前
上官若男应助6666采纳,获得30
5秒前
善学以致用应助wait采纳,获得10
5秒前
tq完成签到,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
AI完成签到,获得积分10
6秒前
7秒前
7秒前
风清扬发布了新的文献求助10
7秒前
Yahooo发布了新的文献求助10
8秒前
8秒前
香蕉觅云应助完美的采珊采纳,获得10
8秒前
MyPaper发布了新的文献求助10
8秒前
wuyao完成签到,获得积分10
8秒前
9秒前
SciGPT应助老王采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547761
求助须知:如何正确求助?哪些是违规求助? 4633216
关于积分的说明 14629838
捐赠科研通 4574723
什么是DOI,文献DOI怎么找? 2508550
邀请新用户注册赠送积分活动 1484961
关于科研通互助平台的介绍 1456029