An extended combined compromise solution framework based on novel intuitionistic fuzzy distance measure and score function with applications in sustainable biomass crop selection

加权 计算机科学 规范化(社会学) 度量(数据仓库) 选择(遗传算法) 数学优化 模糊逻辑 数据挖掘 人工智能 数学 医学 社会学 人类学 放射科
作者
Rakesh Kumar,Satish Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122345-122345 被引量:6
标识
DOI:10.1016/j.eswa.2023.122345
摘要

Now-a-days, due to the increasing demand of the energy resources across the world, choosing the best sustainable biomass crop for the production of biofuels is a strategic decision-making problem. This is generally accepted that intuitionistic fuzzy sets (IFSs) are much more efficient in comparison with fuzzy sets at representing and processing the uncertainty in real-life problems. Proceeding on the same line, this paper attempts to introduce an extended combined compromise solution (CoCoSo) framework to analyze the sustainable biomass crop selection (SBCS) problem in an intuitionistic fuzzy environment. In this framework, we suggest a new integration function based on double normalization multiple aggregation approach to overcome the aggregation biases of the original CoCoSo approach and discuss its advantages with some numerical examples. We also develop a combined weighting strategy based on distance measure and decision experts’ (DEs) opinions to evaluate the significance of criteria . For this, we propose a novel distance measure (DM) and establish its superiority through some numerical comparisons. Also, the rationality of the suggested measure over the extant measures is justified by the use of an algorithm based on the developed measure for pattern recognition issues. In this framework, the comparison issue of IFSs is resolved by proposing a new score function. Furthermore, a case study of the SBCS is presented for the implementation of the developed CoCoSo approach, which confirms the viability and effectiveness of the new methodology. The results of the sensitivity analysis demonstrate that option “Miscanthus” consistently achieves the highest rank and is independent of variations of trade-off parameter and balancing factor. Finally, a comprehensive comparison is carried out to ensure the steadiness and reliability of the introduced framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
寻道图强应助科研通管家采纳,获得50
刚刚
小二郎应助科研通管家采纳,获得20
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
1秒前
山雀发布了新的文献求助10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
芋泥桃桃发布了新的文献求助10
1秒前
研友_Y59685完成签到 ,获得积分10
1秒前
wanci应助不安的冷荷采纳,获得10
1秒前
壮壮发布了新的文献求助10
1秒前
LewisAcid应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
Ava应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
乙予安应助科研通管家采纳,获得20
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
lily应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
选波发布了新的文献求助10
3秒前
4秒前
4秒前
Ava应助霸道恒天采纳,获得10
4秒前
科研通AI6应助霸道恒天采纳,获得10
4秒前
传奇3应助霸道恒天采纳,获得10
4秒前
科研通AI6应助霸道恒天采纳,获得10
4秒前
Lucas应助霸道恒天采纳,获得10
4秒前
CipherSage应助霸道恒天采纳,获得10
5秒前
慕青应助霸道恒天采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336