An extended combined compromise solution framework based on novel intuitionistic fuzzy distance measure and score function with applications in sustainable biomass crop selection

加权 计算机科学 规范化(社会学) 度量(数据仓库) 选择(遗传算法) 数学优化 模糊逻辑 数据挖掘 人工智能 数学 医学 社会学 人类学 放射科
作者
Rakesh Kumar,Satish Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122345-122345 被引量:6
标识
DOI:10.1016/j.eswa.2023.122345
摘要

Now-a-days, due to the increasing demand of the energy resources across the world, choosing the best sustainable biomass crop for the production of biofuels is a strategic decision-making problem. This is generally accepted that intuitionistic fuzzy sets (IFSs) are much more efficient in comparison with fuzzy sets at representing and processing the uncertainty in real-life problems. Proceeding on the same line, this paper attempts to introduce an extended combined compromise solution (CoCoSo) framework to analyze the sustainable biomass crop selection (SBCS) problem in an intuitionistic fuzzy environment. In this framework, we suggest a new integration function based on double normalization multiple aggregation approach to overcome the aggregation biases of the original CoCoSo approach and discuss its advantages with some numerical examples. We also develop a combined weighting strategy based on distance measure and decision experts’ (DEs) opinions to evaluate the significance of criteria . For this, we propose a novel distance measure (DM) and establish its superiority through some numerical comparisons. Also, the rationality of the suggested measure over the extant measures is justified by the use of an algorithm based on the developed measure for pattern recognition issues. In this framework, the comparison issue of IFSs is resolved by proposing a new score function. Furthermore, a case study of the SBCS is presented for the implementation of the developed CoCoSo approach, which confirms the viability and effectiveness of the new methodology. The results of the sensitivity analysis demonstrate that option “Miscanthus” consistently achieves the highest rank and is independent of variations of trade-off parameter and balancing factor. Finally, a comprehensive comparison is carried out to ensure the steadiness and reliability of the introduced framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助灵巧的穆采纳,获得10
1秒前
东风压倒西风完成签到,获得积分10
2秒前
顾矜应助hbhbj采纳,获得10
3秒前
情怀应助张航天采纳,获得10
3秒前
5秒前
创不可贴完成签到,获得积分10
6秒前
生动灵萱完成签到,获得积分10
6秒前
7秒前
过时的花卷完成签到,获得积分10
7秒前
一支桃桃发布了新的文献求助10
8秒前
标致凡儿完成签到 ,获得积分10
9秒前
天天快乐应助zhuyuxin采纳,获得10
9秒前
华仔应助陌上之心采纳,获得10
10秒前
飘逸百褶裙完成签到,获得积分20
15秒前
补药学习发布了新的文献求助10
16秒前
proteinpurify完成签到,获得积分10
17秒前
17秒前
宁人完成签到,获得积分20
19秒前
20秒前
vera完成签到,获得积分10
21秒前
22秒前
02发布了新的文献求助10
23秒前
宁人发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
Ly完成签到,获得积分20
24秒前
简单花花发布了新的文献求助10
25秒前
科研通AI6应助美好凝莲采纳,获得30
25秒前
泡泡完成签到 ,获得积分10
25秒前
ASHES发布了新的文献求助10
27秒前
小二郎应助vincent采纳,获得10
28秒前
嗡嗡嗡完成签到,获得积分10
28秒前
Ly发布了新的文献求助10
29秒前
儒雅的雁山完成签到 ,获得积分10
32秒前
32秒前
无花果应助马里奥采纳,获得10
32秒前
Booiys完成签到,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838