An extended combined compromise solution framework based on novel intuitionistic fuzzy distance measure and score function with applications in sustainable biomass crop selection

加权 计算机科学 规范化(社会学) 度量(数据仓库) 选择(遗传算法) 数学优化 模糊逻辑 数据挖掘 人工智能 数学 医学 社会学 人类学 放射科
作者
Rakesh Kumar,Satish Kumar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122345-122345 被引量:6
标识
DOI:10.1016/j.eswa.2023.122345
摘要

Now-a-days, due to the increasing demand of the energy resources across the world, choosing the best sustainable biomass crop for the production of biofuels is a strategic decision-making problem. This is generally accepted that intuitionistic fuzzy sets (IFSs) are much more efficient in comparison with fuzzy sets at representing and processing the uncertainty in real-life problems. Proceeding on the same line, this paper attempts to introduce an extended combined compromise solution (CoCoSo) framework to analyze the sustainable biomass crop selection (SBCS) problem in an intuitionistic fuzzy environment. In this framework, we suggest a new integration function based on double normalization multiple aggregation approach to overcome the aggregation biases of the original CoCoSo approach and discuss its advantages with some numerical examples. We also develop a combined weighting strategy based on distance measure and decision experts’ (DEs) opinions to evaluate the significance of criteria . For this, we propose a novel distance measure (DM) and establish its superiority through some numerical comparisons. Also, the rationality of the suggested measure over the extant measures is justified by the use of an algorithm based on the developed measure for pattern recognition issues. In this framework, the comparison issue of IFSs is resolved by proposing a new score function. Furthermore, a case study of the SBCS is presented for the implementation of the developed CoCoSo approach, which confirms the viability and effectiveness of the new methodology. The results of the sensitivity analysis demonstrate that option “Miscanthus” consistently achieves the highest rank and is independent of variations of trade-off parameter and balancing factor. Finally, a comprehensive comparison is carried out to ensure the steadiness and reliability of the introduced framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助幸运的蜥蜴采纳,获得10
1秒前
1秒前
慕青应助陈胖何时变陈瘦采纳,获得30
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
慕子哥发布了新的文献求助10
2秒前
顾矜应助原子采纳,获得10
3秒前
小yy发布了新的文献求助10
3秒前
li发布了新的文献求助10
3秒前
zwhy完成签到,获得积分10
3秒前
3秒前
家家完成签到,获得积分10
3秒前
如意闭月完成签到,获得积分10
3秒前
田様应助jibo采纳,获得10
3秒前
华华爸发布了新的文献求助10
5秒前
5秒前
5秒前
无昵称发布了新的文献求助10
5秒前
苗条世德完成签到,获得积分10
6秒前
善学以致用应助仲夏采纳,获得10
6秒前
淮安张伟-本人完成签到,获得积分10
6秒前
伍贰肆完成签到,获得积分10
6秒前
wanci应助wxyes采纳,获得10
7秒前
yiyunzhen完成签到,获得积分20
7秒前
陈乐宁2024完成签到,获得积分10
7秒前
牛人完成签到,获得积分0
7秒前
7秒前
lulu917发布了新的文献求助30
8秒前
精明凡双应助塑化标本少女采纳,获得150
9秒前
9秒前
丘比特应助风清扬采纳,获得10
10秒前
愿好完成签到,获得积分10
10秒前
脑洞疼应助12rcli采纳,获得30
10秒前
Meyako举报xixi求助涉嫌违规
10秒前
zhaosy完成签到,获得积分10
11秒前
Ting发布了新的文献求助10
11秒前
科目三应助zobrzg采纳,获得10
11秒前
吴彦祖完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144