重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

An extended combined compromise solution framework based on novel intuitionistic fuzzy distance measure and score function with applications in sustainable biomass crop selection

加权 计算机科学 规范化(社会学) 度量(数据仓库) 选择(遗传算法) 数学优化 模糊逻辑 数据挖掘 人工智能 数学 医学 社会学 人类学 放射科
作者
Rakesh Kumar,Satish Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122345-122345 被引量:6
标识
DOI:10.1016/j.eswa.2023.122345
摘要

Now-a-days, due to the increasing demand of the energy resources across the world, choosing the best sustainable biomass crop for the production of biofuels is a strategic decision-making problem. This is generally accepted that intuitionistic fuzzy sets (IFSs) are much more efficient in comparison with fuzzy sets at representing and processing the uncertainty in real-life problems. Proceeding on the same line, this paper attempts to introduce an extended combined compromise solution (CoCoSo) framework to analyze the sustainable biomass crop selection (SBCS) problem in an intuitionistic fuzzy environment. In this framework, we suggest a new integration function based on double normalization multiple aggregation approach to overcome the aggregation biases of the original CoCoSo approach and discuss its advantages with some numerical examples. We also develop a combined weighting strategy based on distance measure and decision experts’ (DEs) opinions to evaluate the significance of criteria . For this, we propose a novel distance measure (DM) and establish its superiority through some numerical comparisons. Also, the rationality of the suggested measure over the extant measures is justified by the use of an algorithm based on the developed measure for pattern recognition issues. In this framework, the comparison issue of IFSs is resolved by proposing a new score function. Furthermore, a case study of the SBCS is presented for the implementation of the developed CoCoSo approach, which confirms the viability and effectiveness of the new methodology. The results of the sensitivity analysis demonstrate that option “Miscanthus” consistently achieves the highest rank and is independent of variations of trade-off parameter and balancing factor. Finally, a comprehensive comparison is carried out to ensure the steadiness and reliability of the introduced framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗子超发布了新的文献求助10
刚刚
lala发布了新的文献求助10
1秒前
1秒前
鹿依波完成签到,获得积分10
1秒前
1秒前
2秒前
李爱国应助11采纳,获得30
2秒前
2秒前
斧王应助舒心飞珍采纳,获得10
2秒前
2秒前
3秒前
ShuaiQiBB发布了新的文献求助10
3秒前
111发布了新的文献求助10
3秒前
3秒前
烂漫冰烟完成签到,获得积分10
3秒前
江浔卿完成签到 ,获得积分10
4秒前
难过的飞雪完成签到,获得积分10
4秒前
于金正给于金正的求助进行了留言
4秒前
Gru完成签到,获得积分10
5秒前
企鹅完成签到,获得积分10
5秒前
5秒前
大个应助哦哦哦采纳,获得10
5秒前
iris完成签到,获得积分10
5秒前
Zhaoyuemeng发布了新的文献求助10
5秒前
5秒前
MAVS完成签到,获得积分10
5秒前
6秒前
酷波zai发布了新的文献求助200
6秒前
英姑应助隐形太阳采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
打打应助hvgjgfjhgjh采纳,获得10
7秒前
阔达的凡发布了新的文献求助10
7秒前
Agnes完成签到,获得积分20
7秒前
7秒前
常大有完成签到,获得积分10
7秒前
满意火车发布了新的文献求助10
8秒前
8秒前
无花果应助不会取名字采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673