Improving ductility by coherent nanoprecipitates in medium entropy alloy

材料科学 成核 合金 沉淀硬化 高熵合金 位错 微观结构 极限抗拉强度 延展性(地球科学) 加工硬化 冶金 退火(玻璃) 复合材料 降水 结晶学 热力学 蠕动 物理 气象学 化学
作者
Zihan Zhang,Yan Ma,Muxin Yang,Ping Jiang,Hangqi Feng,Yuntian Zhu,Xiaolei Wu,Fuping Yuan
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:172: 103821-103821 被引量:24
标识
DOI:10.1016/j.ijplas.2023.103821
摘要

Controlling precipitates in spatial density and size distribution is essential for tailoring the microstructure and mechanical properties through precipitation hardening. We herein obtained heterogeneous grain structures with coherent L12 nanoprecipitates in (CrCoNi)94Al4Ti2 medium entropy alloy (MEA) by annealing and aging. Additional pre-aging leads to a high spatial density and more random distribution nucleation sites of the coherent L12 nanoprecipitates. The pre-aging doubled the ductility without apparently sacrificing the strength. Transmission electron microscopy (TEM) revealed that, in pre-aged MEA, finely dispersed L12 nanoprecipitates with higher spatial density were sheared by dislocation, promoting planar slips, which favors geometrically necessary dislocations (GNDs) piling up to increased hetero-deformation-induced (HDI) stress and work-hardening. Stacking faults, Lomer-Cottrell locks, and 9R structures were formed in aged and pre-aged MEA after tensile deformation. The formation of these defects enormously enhanced strain hardening by blocking dislocation movements and accumulating dislocations. Moreover, a higher frequency of interactions between defects and coherent L12 nanoprecipitates can be observed in the pre-aged MEA due to the more randomly distributed L12 nanoprecipitates, substantially increasing ductility. This work demonstrates a new route to achieving a super strength-ductility combination of single-phase FCC high entropy alloys by nanoscale coherent precipitation strengthening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YYL发布了新的文献求助10
刚刚
任蛹发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
2秒前
3秒前
Dicy发布了新的文献求助10
4秒前
JamesPei应助暗号采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Starry发布了新的文献求助10
6秒前
上官若男应助诺一44采纳,获得10
7秒前
酷波er应助Catalysis123采纳,获得10
7秒前
7秒前
林布林发布了新的文献求助10
8秒前
8秒前
xiaoyu123发布了新的文献求助10
8秒前
9秒前
zyq发布了新的文献求助10
9秒前
Hyp完成签到 ,获得积分10
11秒前
12秒前
高兴梦竹发布了新的文献求助10
12秒前
12秒前
时势造英雄完成签到 ,获得积分10
12秒前
任蛹完成签到,获得积分10
13秒前
高兴幼旋发布了新的文献求助10
13秒前
wx完成签到,获得积分10
13秒前
14秒前
情怀应助zengyangyu采纳,获得30
14秒前
bkagyin应助阁下宛歆采纳,获得10
15秒前
15秒前
16秒前
犇骉完成签到,获得积分10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助100
18秒前
18秒前
latata发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933907
求助须知:如何正确求助?哪些是违规求助? 4201940
关于积分的说明 13055538
捐赠科研通 3976004
什么是DOI,文献DOI怎么找? 2178697
邀请新用户注册赠送积分活动 1195062
关于科研通互助平台的介绍 1106433