格子Boltzmann方法
多孔介质
对流
机械
扩散
输运现象
热力学
物理
等温过程
毛细管作用
边值问题
自然对流
多孔性
材料科学
量子力学
复合材料
作者
Dasika Prabhat Sourya,Debashis Panda,Abdolreza Kharaghani,Evangelos Tsotsas,Pardha S. Gurugubelli,Vikranth Kumar Surasani
摘要
One of the most significant challenges in describing the drying of porous materials is the realistic integration of internal transport phenomena into mathematical models, coupled with the external free flow. However, the intricacies of pore-scale geometry make experimentation and observation very difficult in practice, thereby making modeling techniques a useful tool for the analysis of the drying process. Among the many modeling techniques developed for drying, the lattice Boltzmann method (LBM)-based modeling approach has gained favor in recent years due to its ability to incorporate realistic geometry and transport at the pore scale. Our previous works on Shan–Chen LBM for drying of capillary porous media were based on the Bhatnagar–Gross–Krook collision operator and diffusion interface boundary conditions. This study elucidates the drying of a capillary porous medium under the influence of convection–diffusion boundary conditions at the gas side, using Shan–Chen LBM. The pore-scale effects of convection–diffusion conditions during the drying process are presented in relation to the macroscale drying kinetics. Moreover, the differences between the convection–diffusion kinetics and purely diffusion–dominated kinetics of the drying process are also presented here. This work also aims to incorporate the convection–diffusion transport phenomena into the drying process of a porous medium under the influence of an imposed thermal gradient, establishing and studying the phenomena of stabilization and destabilization of the drying front under the influence of a temperature gradient, thereby extending the lattice Boltzmann method of modeling for the simulation of convection–diffusion drying, both for the isothermal case and the imposition of a thermal gradient.
科研通智能强力驱动
Strongly Powered by AbleSci AI