US Risk Stratification System for Follicular Thyroid Neoplasms

医学 卵泡期 接收机工作特性 甲状腺 甲状腺肿瘤 甲状腺癌 放射科 危险分层 甲状腺结节 甲状腺癌 活检 逻辑回归 滤泡癌 腺瘤 内科学 乳头状癌
作者
Jianming Li,Chao Li,Xiaohui Zhou,JiuPing Huang,Peipei Yang,Yuancheng Cang,Hongyan Zhai,RenXiang Huang,Mu Yang,Xiangnan Gou,Yang Zhang,Jie Yu,Ping Liang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:9
标识
DOI:10.1148/radiol.230949
摘要

Background Preoperative assessment of follicular thyroid neoplasms is challenging using the current US risk stratification systems (RSSs) that are applicable to papillary thyroid neoplasms. Purpose To develop a US feature-based RSS for differentiating between follicular thyroid adenoma (FTA) and follicular thyroid carcinoma (FTC) in biopsy-proven follicular neoplasm and compare it with existing RSSs. Materials and Methods This retrospective multicenter study included consecutive adult patients who underwent conventional US and received a final diagnosis of follicular thyroid neoplasm from seven centers between January 2018 and December 2022. US images from a pretraining data set were used to improve readers' understanding of the US characteristics of the FTC and FTA. Univariable and multivariable logistic regression analyses were used to assess the association of qualitative US features with FTC in a training data set. Features with P < .05 were used to construct a prediction model (follicular tumor model, referred to as F model) and RSS for follicular neoplasms using the Thyroid Imaging Reporting and Data System (TI-RADS). Area under the receiver operating characteristic curve (AUC) was compared between follicular TI-RADS (hereafter, F-TI-RADS) and existing RSS (American College of Radiology [ACR] TI-RADS, Korean Society of Thyroid Radiology and Korean Society of Radiology TI-RADS [hereafter, referred to as K-TI-RADS], and Chinese TI-RADS [hereafter, referred to as C-TI-RADS]) in a validation data set. Results The pretraining, training, and validation data sets included 30 (mean age, 47.6 years ± 16.0 [SD]; 16 male patients; FTCs, 30 of 60 [50.0%]), 703 (mean age, 47.9 years ± 14.5; 530 female patients; FTCs, 188 of 703 [26.7%]), and 155 (mean age, 49.9 years ± 13.3 [SD]; 155 female patients; FTCs, 43 of 155 [27.7%]) patients. In the validation data set, the F-TI-RADS showed improved performance for differentiating between FTA and FTC (AUC, 0.81; 95% CI: 0.71, 0.86) compared with ACR TI-RADS (AUC, 0.74; 95% CI: 0.66, 0.80; P = .02), K-TI-RADS (AUC, 0.69; 95% CI: 0.61, 0.76; P = .002), and C-TI-RADS (AUC, 0.68; 95% CI: 0.60, 0.75; P = .002). Conclusion F-TI-RADS outperformed existing RSSs for differentiating between FTC and FTA. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Baumgarten in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助rookie_b0采纳,获得10
1秒前
毛慢慢发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
kangkang完成签到,获得积分10
2秒前
丘比特应助东风第一枝采纳,获得10
2秒前
2秒前
丰知然应助normankasimodo采纳,获得10
3秒前
黑森林发布了新的文献求助30
3秒前
hu970发布了新的文献求助10
3秒前
3秒前
俭朴夜雪发布了新的文献求助30
3秒前
林上草应助lzj001983采纳,获得10
3秒前
小白完成签到,获得积分20
3秒前
药疯了完成签到,获得积分20
4秒前
桐桐应助123采纳,获得10
4秒前
风中寄云发布了新的文献求助10
4秒前
buuyoo发布了新的文献求助10
4秒前
zjudxn发布了新的文献求助10
4秒前
春夏爱科研完成签到,获得积分10
5秒前
飞翔的西红柿完成签到,获得积分10
5秒前
xzy完成签到,获得积分10
5秒前
L.发布了新的文献求助20
6秒前
Verdigris完成签到,获得积分10
7秒前
cindy完成签到,获得积分10
7秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
7秒前
金色热浪完成签到 ,获得积分10
7秒前
快去读文献完成签到,获得积分20
7秒前
斯文静曼完成签到,获得积分10
7秒前
7秒前
7秒前
拼搏思卉关注了科研通微信公众号
8秒前
8秒前
liudiqiu应助酷酷的起眸采纳,获得10
8秒前
研友_8yN60L发布了新的文献求助10
8秒前
所所应助VDC采纳,获得10
8秒前
xxq发布了新的文献求助30
8秒前
xzy发布了新的文献求助20
9秒前
Linanana完成签到,获得积分10
9秒前
9秒前
贾舒涵发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759