格式化
催化作用
化学
甲醇
氢化物
金属
无机化学
甲酸甲酯
反应性(心理学)
光化学
密度泛函理论
反应中间体
反应机理
产量(工程)
纳米颗粒
红外光谱学
物理化学
计算化学
纳米技术
材料科学
有机化学
医学
替代医学
病理
冶金
作者
Yang He,Yuanyuan Li,Ming Lei,Felipe Polo‐Garzon,Jorge E. Perez-Aguilar,Simon R. Bare,Eric Formo,Hwangsun Kim,Luke L. Daemen,Yongqiang Cheng,Kunlun Hong,Miaofang Chi,De‐en Jiang,Zili Wu
标识
DOI:10.1002/anie.202313389
摘要
Abstract Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal‐support interactions when using supported metal nanoparticles. This study focuses on CO 2 hydrogenation over supported Cu nanoparticles, revealing a 3‐fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO 2.8 H 0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO 3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO 2.8 H 0.2 surface hydride species follow a Mars van Krevelen mechanism in CO 2 hydrogenation, promoting methanol production. High‐pressure steady‐state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO 2.8 H 0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO 3 . An operando high‐pressure diffuse reflectance infrared spectroscopy (DRIFTS)‐SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate‐limiting. However, the catalytic reactivity of Cu/BaTiO 2.8 H 0.2 towards the formate species is much higher than Cu/BaTiO 3 , likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.
科研通智能强力驱动
Strongly Powered by AbleSci AI