医学
质量(理念)
预测建模
质量保证
人工智能
软件
机器学习
数据挖掘
计算机科学
病理
外部质量评估
认识论
程序设计语言
哲学
作者
Florien S van Royen,Folkert W. Asselbergs,Fernándo Alfonso,Panos Vardas,Maarten van Smeden
标识
DOI:10.1093/eurheartj/ehad727
摘要
Abstract To raise the quality of clinical artificial intelligence (AI) prediction modelling studies in the cardiovascular health domain and thereby improve their impact and relevancy, the editors for digital health, innovation, and quality standards of the European Heart Journal propose five minimal quality criteria for AI-based prediction model development and validation studies: complete reporting, carefully defined intended use of the model, rigorous validation, large enough sample size, and openness of code and software.
科研通智能强力驱动
Strongly Powered by AbleSci AI