Self-supervised enhanced thyroid nodule detection in ultrasound examination video sequences with multi-perspective evaluation

计算机科学 人工智能 背景(考古学) 计算机视觉 精确性和召回率 模式识别(心理学) 生物 古生物学
作者
Ningtao Liu,Aaron Fenster,David Tessier,Chun Jin,Shuiping Gou,Jaron Chong
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (23): 235007-235007
标识
DOI:10.1088/1361-6560/ad092a
摘要

Objective.Ultrasound is the most commonly used examination for the detection and identification of thyroid nodules. Since manual detection is time-consuming and subjective, attempts to introduce machine learning into this process are ongoing. However, the performance of these methods is limited by the low signal-to-noise ratio and tissue contrast of ultrasound images. To address these challenges, we extend thyroid nodule detection from image-based to video-based using the temporal context information in ultrasound videos.Approach.We propose a video-based deep learning model with adjacent frame perception (AFP) for accurate and real-time thyroid nodule detection. Compared to image-based methods, AFP can aggregate semantically similar contextual features in the video. Furthermore, considering the cost of medical image annotation for video-based models, a patch scale self-supervised model (PASS) is proposed. PASS is trained on unlabeled datasets to improve the performance of the AFP model without additional labelling costs.Main results.The PASS model is trained by 92 videos containing 23 773 frames, of which 60 annotated videos containing 16 694 frames were used to train and evaluate the AFP model. The evaluation is performed from the video, frame, nodule, and localization perspectives. In the evaluation of the localization perspective, we used the average precision metric with the intersection-over-union threshold set to 50% (AP@50), which is the area under the smoothed Precision-Recall curve. Our proposed AFP improved AP@50 from 0.256 to 0.390, while the PASS-enhanced AFP further improved the AP@50 to 0.425. AFP and PASS also improve the performance in the valuations of other perspectives based on the localization results.Significance.Our video-based model can mitigate the effects of low signal-to-noise ratio and tissue contrast in ultrasound images and enable the accurate detection of thyroid nodules in real-time. The evaluation from multiple perspectives of the ablation experiments demonstrates the effectiveness of our proposed AFP and PASS models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
深情安青应助Unpredictable采纳,获得10
4秒前
4秒前
研友_8KAzAn发布了新的文献求助10
4秒前
热心雨南完成签到 ,获得积分10
7秒前
温暖如风发布了新的文献求助10
8秒前
danli发布了新的文献求助10
9秒前
9秒前
kingwill发布了新的文献求助150
10秒前
10秒前
zho应助zsy采纳,获得10
11秒前
生椰拿铁完成签到 ,获得积分10
12秒前
13秒前
科研通AI6应助lsw采纳,获得10
13秒前
不会游泳的鱼完成签到 ,获得积分10
15秒前
16秒前
yiyi发布了新的文献求助10
16秒前
长情的芝麻完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
汴汴发布了新的文献求助10
19秒前
rora完成签到 ,获得积分10
20秒前
大桶茄子完成签到,获得积分10
20秒前
西因应助1776734134采纳,获得10
21秒前
bellaluna完成签到 ,获得积分10
21秒前
田様应助史萌采纳,获得10
21秒前
21秒前
22秒前
现实的又夏完成签到,获得积分10
23秒前
左欣岳完成签到 ,获得积分10
24秒前
Unpredictable发布了新的文献求助10
24秒前
123Y发布了新的文献求助10
24秒前
缥缈的闭月完成签到,获得积分10
25秒前
平常的毛豆应助NEU_ZJH采纳,获得30
26秒前
852应助傻傻的凌寒采纳,获得10
26秒前
情怀应助吃肉璇璇采纳,获得10
28秒前
火星上的小笼包完成签到,获得积分10
29秒前
coco完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655