Self-supervised enhanced thyroid nodule detection in ultrasound examination video sequences with multi-perspective evaluation

计算机科学 人工智能 背景(考古学) 计算机视觉 精确性和召回率 模式识别(心理学) 生物 古生物学
作者
Ningtao Liu,Aaron Fenster,David Tessier,Chun Jin,Shuiping Gou,Jaron Chong
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (23): 235007-235007
标识
DOI:10.1088/1361-6560/ad092a
摘要

Objective.Ultrasound is the most commonly used examination for the detection and identification of thyroid nodules. Since manual detection is time-consuming and subjective, attempts to introduce machine learning into this process are ongoing. However, the performance of these methods is limited by the low signal-to-noise ratio and tissue contrast of ultrasound images. To address these challenges, we extend thyroid nodule detection from image-based to video-based using the temporal context information in ultrasound videos.Approach.We propose a video-based deep learning model with adjacent frame perception (AFP) for accurate and real-time thyroid nodule detection. Compared to image-based methods, AFP can aggregate semantically similar contextual features in the video. Furthermore, considering the cost of medical image annotation for video-based models, a patch scale self-supervised model (PASS) is proposed. PASS is trained on unlabeled datasets to improve the performance of the AFP model without additional labelling costs.Main results.The PASS model is trained by 92 videos containing 23 773 frames, of which 60 annotated videos containing 16 694 frames were used to train and evaluate the AFP model. The evaluation is performed from the video, frame, nodule, and localization perspectives. In the evaluation of the localization perspective, we used the average precision metric with the intersection-over-union threshold set to 50% (AP@50), which is the area under the smoothed Precision-Recall curve. Our proposed AFP improved AP@50 from 0.256 to 0.390, while the PASS-enhanced AFP further improved the AP@50 to 0.425. AFP and PASS also improve the performance in the valuations of other perspectives based on the localization results.Significance.Our video-based model can mitigate the effects of low signal-to-noise ratio and tissue contrast in ultrasound images and enable the accurate detection of thyroid nodules in real-time. The evaluation from multiple perspectives of the ablation experiments demonstrates the effectiveness of our proposed AFP and PASS models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小铭发布了新的文献求助10
2秒前
一路生花完成签到,获得积分10
2秒前
欢喜的元蝶完成签到,获得积分10
3秒前
4秒前
温暖的天与完成签到 ,获得积分10
5秒前
坚强的初夏完成签到,获得积分10
6秒前
Hello应助英语六级采纳,获得10
7秒前
YanXT完成签到,获得积分10
7秒前
完美世界应助ZHI采纳,获得10
8秒前
不语发布了新的文献求助10
9秒前
9秒前
10秒前
叮叮叮铛完成签到,获得积分10
11秒前
Jasper应助基拉采纳,获得10
14秒前
15秒前
Alan发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
不语完成签到,获得积分10
17秒前
wlscj举报lq求助涉嫌违规
17秒前
changping应助木子雨采纳,获得10
18秒前
贾明灵发布了新的文献求助10
18秒前
18秒前
科研通AI6应助和谐的芷文采纳,获得10
18秒前
blingcmeng发布了新的文献求助10
20秒前
不爱吃魔芋完成签到,获得积分10
20秒前
科研通AI5应助anton采纳,获得10
21秒前
zsy完成签到,获得积分10
21秒前
anhao发布了新的文献求助10
22秒前
22秒前
科研通AI5应助花酒采纳,获得10
22秒前
Chimmy发布了新的文献求助10
23秒前
hibeauty完成签到,获得积分10
24秒前
24秒前
25秒前
26秒前
caihong应助柳如烟采纳,获得10
26秒前
xx发布了新的文献求助10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834