Abstract cognitive maps of social network structure aid adaptive inference

多样性(控制论) 推论 计算机科学 抽象 社交网络(社会语言学) 认知科学 友谊 认知地图 认知 心理学 人工智能 数据科学 认知心理学 社会心理学 认识论 万维网 社会化媒体 哲学 神经科学
作者
Jae-Young Son,Apoorva Bhandari,Oriel FeldmanHall
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (47)
标识
DOI:10.1073/pnas.2310801120
摘要

Social navigation-such as anticipating where gossip may spread, or identifying which acquaintances can help land a job-relies on knowing how people are connected within their larger social communities. Problematically, for most social networks, the space of possible relationships is too vast to observe and memorize. Indeed, people's knowledge of these social relations is well known to be biased and error-prone. Here, we reveal that these biased representations reflect a fundamental computation that abstracts over individual relationships to enable principled inferences about unseen relationships. We propose a theory of network representation that explains how people learn inferential cognitive maps of social relations from direct observation, what kinds of knowledge structures emerge as a consequence, and why it can be beneficial to encode systematic biases into social cognitive maps. Leveraging simulations, laboratory experiments, and "field data" from a real-world network, we find that people abstract observations of direct relations (e.g., friends) into inferences of multistep relations (e.g., friends-of-friends). This multistep abstraction mechanism enables people to discover and represent complex social network structure, affording adaptive inferences across a variety of contexts, including friendship, trust, and advice-giving. Moreover, this multistep abstraction mechanism unifies a variety of otherwise puzzling empirical observations about social behavior. Our proposal generalizes the theory of cognitive maps to the fundamental computational problem of social inference, presenting a powerful framework for understanding the workings of a predictive mind operating within a complex social world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形的雨雪完成签到 ,获得积分20
刚刚
Lalalala发布了新的文献求助10
刚刚
南巷发布了新的文献求助10
刚刚
1秒前
不错完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助50
2秒前
2秒前
Bigfish完成签到,获得积分10
3秒前
excalibur发布了新的文献求助10
4秒前
cyn0762完成签到,获得积分10
4秒前
共享精神应助malenia采纳,获得10
4秒前
5秒前
隐形曼青应助wzc采纳,获得10
5秒前
华仔应助愤怒的寻梅采纳,获得10
5秒前
勤恳的听兰完成签到,获得积分10
5秒前
韧战发布了新的文献求助10
6秒前
淡然亦云发布了新的文献求助10
8秒前
linnya发布了新的文献求助10
9秒前
Yuantian发布了新的文献求助20
10秒前
11秒前
12秒前
shijiamian完成签到,获得积分10
12秒前
12秒前
13秒前
limz完成签到,获得积分10
13秒前
蒸蒸日上完成签到 ,获得积分10
13秒前
JamesPei应助sanL采纳,获得10
16秒前
16秒前
zzww发布了新的文献求助10
16秒前
阳光的霸发布了新的文献求助10
16秒前
wzc发布了新的文献求助10
17秒前
17秒前
King完成签到 ,获得积分10
17秒前
18秒前
瘦瘦凌晴发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
科研通AI5应助Bown采纳,获得10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088822
求助须知:如何正确求助?哪些是违规求助? 4303677
关于积分的说明 13412175
捐赠科研通 4129366
什么是DOI,文献DOI怎么找? 2261427
邀请新用户注册赠送积分活动 1265480
关于科研通互助平台的介绍 1200010