Abstract cognitive maps of social network structure aid adaptive inference

多样性(控制论) 推论 计算机科学 抽象 社交网络(社会语言学) 认知科学 友谊 认知地图 认知 心理学 人工智能 数据科学 认知心理学 社会心理学 认识论 万维网 社会化媒体 神经科学 哲学
作者
Jae-Young Son,Apoorva Bhandari,Oriel FeldmanHall
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (47)
标识
DOI:10.1073/pnas.2310801120
摘要

Social navigation-such as anticipating where gossip may spread, or identifying which acquaintances can help land a job-relies on knowing how people are connected within their larger social communities. Problematically, for most social networks, the space of possible relationships is too vast to observe and memorize. Indeed, people's knowledge of these social relations is well known to be biased and error-prone. Here, we reveal that these biased representations reflect a fundamental computation that abstracts over individual relationships to enable principled inferences about unseen relationships. We propose a theory of network representation that explains how people learn inferential cognitive maps of social relations from direct observation, what kinds of knowledge structures emerge as a consequence, and why it can be beneficial to encode systematic biases into social cognitive maps. Leveraging simulations, laboratory experiments, and "field data" from a real-world network, we find that people abstract observations of direct relations (e.g., friends) into inferences of multistep relations (e.g., friends-of-friends). This multistep abstraction mechanism enables people to discover and represent complex social network structure, affording adaptive inferences across a variety of contexts, including friendship, trust, and advice-giving. Moreover, this multistep abstraction mechanism unifies a variety of otherwise puzzling empirical observations about social behavior. Our proposal generalizes the theory of cognitive maps to the fundamental computational problem of social inference, presenting a powerful framework for understanding the workings of a predictive mind operating within a complex social world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xin发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
4秒前
段欣怡完成签到,获得积分10
4秒前
大个应助michaelvin采纳,获得20
5秒前
无心的幻天完成签到,获得积分10
6秒前
zyj123发布了新的文献求助10
6秒前
Felix发布了新的文献求助10
7秒前
小崔读研完成签到 ,获得积分10
8秒前
8秒前
今天动脑筋了吗完成签到,获得积分20
8秒前
9秒前
9秒前
无解发布了新的文献求助10
9秒前
高贵花瓣应助桑榆非晚采纳,获得10
9秒前
研友_LOoomL发布了新的文献求助10
10秒前
aa完成签到,获得积分10
10秒前
敏感时光完成签到,获得积分10
11秒前
爆米花应助椒盐柠檬茶采纳,获得10
11秒前
12秒前
xiong完成签到 ,获得积分10
12秒前
高高小凝发布了新的文献求助10
13秒前
nenoaowu发布了新的文献求助10
13秒前
苗苗发布了新的文献求助10
13秒前
敏感时光发布了新的文献求助10
13秒前
打打应助zyj123采纳,获得10
13秒前
逆境完成签到,获得积分10
14秒前
14秒前
科目三应助巧乐兹采纳,获得10
15秒前
15秒前
风中的善愁完成签到,获得积分10
15秒前
16秒前
16秒前
椒盐柠檬茶完成签到,获得积分10
18秒前
空溟fever完成签到,获得积分10
18秒前
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243165
求助须知:如何正确求助?哪些是违规求助? 2887135
关于积分的说明 8246772
捐赠科研通 2555721
什么是DOI,文献DOI怎么找? 1383867
科研通“疑难数据库(出版商)”最低求助积分说明 649767
邀请新用户注册赠送积分活动 625635