Abstract cognitive maps of social network structure aid adaptive inference

多样性(控制论) 推论 计算机科学 抽象 社交网络(社会语言学) 认知科学 友谊 认知地图 认知 心理学 人工智能 数据科学 认知心理学 社会心理学 认识论 万维网 社会化媒体 哲学 神经科学
作者
Jae-Young Son,Apoorva Bhandari,Oriel FeldmanHall
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (47)
标识
DOI:10.1073/pnas.2310801120
摘要

Social navigation-such as anticipating where gossip may spread, or identifying which acquaintances can help land a job-relies on knowing how people are connected within their larger social communities. Problematically, for most social networks, the space of possible relationships is too vast to observe and memorize. Indeed, people's knowledge of these social relations is well known to be biased and error-prone. Here, we reveal that these biased representations reflect a fundamental computation that abstracts over individual relationships to enable principled inferences about unseen relationships. We propose a theory of network representation that explains how people learn inferential cognitive maps of social relations from direct observation, what kinds of knowledge structures emerge as a consequence, and why it can be beneficial to encode systematic biases into social cognitive maps. Leveraging simulations, laboratory experiments, and "field data" from a real-world network, we find that people abstract observations of direct relations (e.g., friends) into inferences of multistep relations (e.g., friends-of-friends). This multistep abstraction mechanism enables people to discover and represent complex social network structure, affording adaptive inferences across a variety of contexts, including friendship, trust, and advice-giving. Moreover, this multistep abstraction mechanism unifies a variety of otherwise puzzling empirical observations about social behavior. Our proposal generalizes the theory of cognitive maps to the fundamental computational problem of social inference, presenting a powerful framework for understanding the workings of a predictive mind operating within a complex social world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
suiwuya完成签到,获得积分10
1秒前
苹果芷雪发布了新的文献求助10
1秒前
初雪应助酷酷一兰采纳,获得10
1秒前
2秒前
合适的巧荷完成签到,获得积分10
2秒前
2秒前
Yusheng发布了新的文献求助10
3秒前
江十三完成签到,获得积分10
3秒前
诚心的香水完成签到,获得积分10
4秒前
领导范儿应助zyy采纳,获得10
5秒前
扣脚盟完成签到 ,获得积分10
5秒前
6秒前
笙惗雪完成签到,获得积分10
6秒前
7秒前
wxa发布了新的文献求助10
7秒前
老迟到的可乐完成签到,获得积分10
7秒前
典雅以南完成签到,获得积分10
8秒前
干红完成签到,获得积分10
8秒前
顺心的惜蕊完成签到 ,获得积分10
8秒前
积极老四完成签到,获得积分10
9秒前
玲玲玲完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
赘婿应助行道吉安采纳,获得10
12秒前
小盆呐完成签到,获得积分10
13秒前
科研通AI6.1应助qq采纳,获得10
13秒前
闪闪的诗珊应助cjl采纳,获得30
14秒前
14秒前
微微发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
17秒前
魁梧的钧发布了新的文献求助10
18秒前
18秒前
愉快的夏菡完成签到,获得积分10
18秒前
solar完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775161
求助须知:如何正确求助?哪些是违规求助? 5622242
关于积分的说明 15437861
捐赠科研通 4907500
什么是DOI,文献DOI怎么找? 2640726
邀请新用户注册赠送积分活动 1588600
关于科研通互助平台的介绍 1543497