Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks

语义相似性 计算机科学 图形 人工智能 机器学习 相似性(几何) 代表(政治) 分类器(UML) 特征学习 联想(心理学) 理论计算机科学 认识论 图像(数学) 政治 哲学 法学 政治学
作者
Bo-Wei Zhao,Xiaorui Su,Yue Yang,Dongxu Li,Guodong Li,Pengwei Hu,Yong-Gang Zhao,Lun Hu
出处
期刊:Methods [Elsevier BV]
卷期号:220: 106-114 被引量:1
标识
DOI:10.1016/j.ymeth.2023.10.014
摘要

Discovering new indications for existing drugs is a promising development strategy at various stages of drug research and development. However, most of them complete their tasks by constructing a variety of heterogeneous networks without considering available higher-order connectivity patterns in heterogeneous biological information networks, which are believed to be useful for improving the accuracy of new drug discovering. To this end, we propose a computational-based model, called SFRLDDA, for drug-disease association prediction by using semantic graph and function similarity representation learning. Specifically, SFRLDDA first integrates a heterogeneous information network (HIN) by drug-disease, drug-protein, protein-disease associations, and their biological knowledge. Second, different representation learning strategies are applied to obtain the feature representations of drugs and diseases from different perspectives over semantic graph and function similarity graphs constructed, respectively. At last, a Random Forest classifier is incorporated by SFRLDDA to discover potential drug-disease associations (DDAs). Experimental results demonstrate that SFRLDDA yields a best performance when compared with other state-of-the-art models on three benchmark datasets. Moreover, case studies also indicate that the simultaneous consideration of semantic graph and function similarity of drugs and diseases in the HIN allows SFRLDDA to precisely predict DDAs in a more comprehensive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助小雨采纳,获得10
4秒前
5秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
1111应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
8秒前
小李发布了新的文献求助10
9秒前
留白留白发布了新的文献求助10
11秒前
12秒前
共享精神应助Chillym采纳,获得10
13秒前
cyrong发布了新的文献求助20
15秒前
15秒前
天冷了hhhdh完成签到,获得积分10
16秒前
wyj发布了新的文献求助10
21秒前
22秒前
22秒前
26秒前
29秒前
夏日完成签到 ,获得积分10
29秒前
wyj完成签到,获得积分10
29秒前
31秒前
初见发布了新的文献求助10
31秒前
32秒前
FashionBoy应助潇洒的凡灵采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652