A Siamese-Transport Domain Adaptation Framework for 3D MRI Classification of Gliomas and Alzheimer's Diseases

计算机科学 人工智能 域适应 领域(数学分析) 胶质瘤 磁共振成像 医学 数学 放射科 癌症研究 数学分析 分类器(UML)
作者
Luyue Yu,Ju Liu,Qiang Wu,Jing Wang,Aixi Qu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 391-402 被引量:4
标识
DOI:10.1109/jbhi.2023.3332419
摘要

Accurate and fully automated brain structure examination and prediction from 3D volumetric magnetic resonance imaging (MRI) is a necessary step in medical imaging analysis, which can assist greatly in clinical diagnosis. Traditional deep learning models suffer from severe performance degradation when applied to clinically acquired unlabeled data. The performance degradation is mainly caused by domain discrepancy such as different device types and parameter settings for data acquisition. However, existing approaches focus on the reduction of domain discrepancies but ignore the entanglement of semantic features and domain information. In this article, we explore the feature invariance of categories and domains in different projection spaces and propose a Siamese-Transport Domain Adaptation (STDA) method using a joint optimal transport theory and contrastive learning for automatic 3D MRI classification and glioma multi-grade prediction. Specifically, the learning framework updates the distribution of features across domains and categories by Siamese transport network training with an Optimal Cost Transfer Strategy (OCTS) and a Mutual Invariant Constraint (MIC) in two projective spaces to find multiple invariants in potential heterogeneity. We design three sets of transfer task scenarios with different source and target domains, and demonstrate that STDA yields substantially higher generalization performance than other state-of-the-art unsupervised domain adaptation (UDA) methods. The method is applicable on 3D MRI data from glioma to Alzheimer's disease and has promising applications in the future clinical diagnosis and treatment of brain diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
白六六发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI5应助风犬少年采纳,获得10
5秒前
Young应助zhuzhu采纳,获得10
6秒前
7秒前
浮游应助zyz采纳,获得20
9秒前
10秒前
PsyQin完成签到,获得积分10
11秒前
777发布了新的文献求助10
11秒前
赘婿应助ChangZhenglee采纳,获得10
12秒前
包凡之发布了新的文献求助10
13秒前
leopold完成签到,获得积分10
14秒前
云ssss完成签到,获得积分10
14秒前
14秒前
15秒前
wxj发布了新的文献求助10
15秒前
小蘑菇应助活泼的觅云采纳,获得10
15秒前
淡定小小完成签到,获得积分10
16秒前
jy完成签到,获得积分10
16秒前
Ico发布了新的文献求助20
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
小怪完成签到,获得积分10
17秒前
Alaska关注了科研通微信公众号
18秒前
齐天完成签到 ,获得积分10
19秒前
Zhr完成签到 ,获得积分10
19秒前
20秒前
20秒前
酷炫的安青完成签到 ,获得积分20
20秒前
20秒前
今后应助777采纳,获得10
21秒前
拾一发布了新的文献求助10
22秒前
斯人如机发布了新的文献求助10
22秒前
25秒前
czz发布了新的文献求助10
26秒前
夕子爱科研完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075786
求助须知:如何正确求助?哪些是违规求助? 4295478
关于积分的说明 13384730
捐赠科研通 4117273
什么是DOI,文献DOI怎么找? 2254776
邀请新用户注册赠送积分活动 1259379
关于科研通互助平台的介绍 1192141