A Siamese-Transport Domain Adaptation Framework for 3D MRI Classification of Gliomas and Alzheimer's Diseases

计算机科学 人工智能 域适应 领域(数学分析) 胶质瘤 磁共振成像 医学 数学 放射科 癌症研究 分类器(UML) 数学分析
作者
Luyue Yu,Ju Liu,Qiang Wu,Jing Wang,Aixi Qu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 391-402 被引量:4
标识
DOI:10.1109/jbhi.2023.3332419
摘要

Accurate and fully automated brain structure examination and prediction from 3D volumetric magnetic resonance imaging (MRI) is a necessary step in medical imaging analysis, which can assist greatly in clinical diagnosis. Traditional deep learning models suffer from severe performance degradation when applied to clinically acquired unlabeled data. The performance degradation is mainly caused by domain discrepancy such as different device types and parameter settings for data acquisition. However, existing approaches focus on the reduction of domain discrepancies but ignore the entanglement of semantic features and domain information. In this article, we explore the feature invariance of categories and domains in different projection spaces and propose a Siamese-Transport Domain Adaptation (STDA) method using a joint optimal transport theory and contrastive learning for automatic 3D MRI classification and glioma multi-grade prediction. Specifically, the learning framework updates the distribution of features across domains and categories by Siamese transport network training with an Optimal Cost Transfer Strategy (OCTS) and a Mutual Invariant Constraint (MIC) in two projective spaces to find multiple invariants in potential heterogeneity. We design three sets of transfer task scenarios with different source and target domains, and demonstrate that STDA yields substantially higher generalization performance than other state-of-the-art unsupervised domain adaptation (UDA) methods. The method is applicable on 3D MRI data from glioma to Alzheimer's disease and has promising applications in the future clinical diagnosis and treatment of brain diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bao完成签到 ,获得积分10
刚刚
刚刚
初夏微凉发布了新的文献求助30
刚刚
1秒前
书霂完成签到,获得积分10
1秒前
优秀含羞草完成签到,获得积分10
2秒前
宓沂完成签到,获得积分10
2秒前
vivre223完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
受伤凌蝶完成签到,获得积分10
4秒前
wenjiejiang完成签到,获得积分10
5秒前
5秒前
zly完成签到 ,获得积分10
6秒前
6秒前
李某人完成签到,获得积分10
6秒前
7秒前
小鱼完成签到,获得积分10
8秒前
小崽总完成签到,获得积分10
8秒前
挽风完成签到,获得积分10
11秒前
11秒前
dxs发布了新的文献求助10
11秒前
苹果沛柔完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
12秒前
Amon完成签到 ,获得积分10
13秒前
结实寄柔完成签到,获得积分10
14秒前
dh完成签到,获得积分0
14秒前
超帅鸭子发布了新的文献求助10
15秒前
苹果沛柔发布了新的文献求助10
16秒前
18秒前
sure完成签到 ,获得积分10
20秒前
伶俐的不尤完成签到,获得积分10
20秒前
可乐完成签到,获得积分10
21秒前
乐乐乐乐乐乐应助scinature采纳,获得10
23秒前
angrymax完成签到,获得积分10
24秒前
俭朴的天薇完成签到,获得积分10
25秒前
Tanhm完成签到,获得积分10
27秒前
leolin完成签到,获得积分10
27秒前
27秒前
Dr-Luo完成签到 ,获得积分10
27秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029