A Siamese-Transport Domain Adaptation Framework for 3D MRI Classification of Gliomas and Alzheimer's Diseases

计算机科学 人工智能 域适应 领域(数学分析) 胶质瘤 磁共振成像 医学 数学 放射科 癌症研究 分类器(UML) 数学分析
作者
Luyue Yu,Ju Liu,Qiang Wu,Jing Wang,Aixi Qu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 391-402 被引量:4
标识
DOI:10.1109/jbhi.2023.3332419
摘要

Accurate and fully automated brain structure examination and prediction from 3D volumetric magnetic resonance imaging (MRI) is a necessary step in medical imaging analysis, which can assist greatly in clinical diagnosis. Traditional deep learning models suffer from severe performance degradation when applied to clinically acquired unlabeled data. The performance degradation is mainly caused by domain discrepancy such as different device types and parameter settings for data acquisition. However, existing approaches focus on the reduction of domain discrepancies but ignore the entanglement of semantic features and domain information. In this article, we explore the feature invariance of categories and domains in different projection spaces and propose a Siamese-Transport Domain Adaptation (STDA) method using a joint optimal transport theory and contrastive learning for automatic 3D MRI classification and glioma multi-grade prediction. Specifically, the learning framework updates the distribution of features across domains and categories by Siamese transport network training with an Optimal Cost Transfer Strategy (OCTS) and a Mutual Invariant Constraint (MIC) in two projective spaces to find multiple invariants in potential heterogeneity. We design three sets of transfer task scenarios with different source and target domains, and demonstrate that STDA yields substantially higher generalization performance than other state-of-the-art unsupervised domain adaptation (UDA) methods. The method is applicable on 3D MRI data from glioma to Alzheimer's disease and has promising applications in the future clinical diagnosis and treatment of brain diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零四零零柒贰完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
忧虑的代容完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
上官若男应助sinlar采纳,获得10
2秒前
天天快乐应助无限的幼萱采纳,获得10
2秒前
3秒前
3秒前
互助应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
思源应助科研通管家采纳,获得30
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
打打应助科研通管家采纳,获得10
5秒前
开放鸿涛应助科研通管家采纳,获得10
5秒前
5秒前
charint应助科研通管家采纳,获得30
5秒前
烟花应助科研通管家采纳,获得10
5秒前
开放鸿涛应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
JamesPei应助莫湫采纳,获得10
6秒前
wsyiming完成签到,获得积分10
6秒前
亗sui发布了新的文献求助10
7秒前
8秒前
英姑应助三只兔子采纳,获得10
8秒前
ash发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172