Anomaly detection and multi-step estimation based remaining useful life prediction for rolling element bearings

预言 滚动轴承 异常检测 估计员 卡尔曼滤波器 离群值 数据挖掘 计算机科学 支持向量机 颗粒过滤器 滤波器(信号处理) 工程类 人工智能 振动 统计 数学 物理 量子力学 计算机视觉
作者
Junyu Qi,Rui Zhu,Chenyu Liu,Alexandre Mauricio,Konstantinos Gryllias
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:206: 110910-110910 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110910
摘要

The prediction of the Remaining Useful Life (RUL) of rotating machinery targets the avoidance of sudden machine failures and the optimization of the maintenance schedules as well as the management of repairs and replacements. A number of statistical model-based prognostics methodologies have been proposed in recent literature but a number of open challenges still exist, blocking their integration in the industry: (i) The extraction of a high-quality Health Indicator (HI) is critical for bearings' prognostics but till now the trend of many classic HIs is often disturbed; deviating from a monotonical increase or decrease. (ii) The detection of the Start Prediction Time (SPT) on the HI is usually required in order to improve the accuracy of the RUL estimation but it can be incorrect especially when distinct random outliers occur. (iii) The widely applied RUL estimators, e.g. the Kalman filter (KF) and the Particle filter (PF), belong to the category of single-step estimation techniques that assume that the current step estimation depends only on the state of the previous step. However, the occurrence of bearings' damage is usually not a sudden change but an accumulated process. Therefore a novel prognostic strategy for Rolling Element Bearings (REB) is proposed in this paper, which integrates a robust anomaly detection technique, the Support Vector Data Description (SVDD), with a multi-step estimation method, the Moving Horizon Estimation (MHE). Various advanced entropy and sparsity HIs are extracted by signals filtered at different frequency bands. By comparing all the extracted HIs based on a proposed criterion, a premium prognostic HI is chosen from a specific frequency band. Moreover, the SVDD, deployed and combined with several proposed constraints, can robustly detect the occurrence of a bearing fault and decide the proper SPT. Furthermore, the MHE is combined with two popular exponential statistical models and a second-order polynomial model for bearings' prognostics. Experimental results from fifteen degraded bearings demonstrate that the MHE outperforms the classic Kalman filter and Particle filter. Moreover, the polynomial model achieves a better RUL estimation compared to the two classic exponential models in combination with the MHE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得20
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
4秒前
6秒前
柒八染完成签到,获得积分10
6秒前
酷酷菲音完成签到,获得积分10
6秒前
Emi完成签到,获得积分10
8秒前
9秒前
zly发布了新的文献求助10
10秒前
lemon发布了新的文献求助10
10秒前
11秒前
红烧驱逐舰完成签到,获得积分10
12秒前
齐鸿轩完成签到,获得积分10
12秒前
cgshao发布了新的文献求助10
13秒前
LHZ完成签到,获得积分10
14秒前
奋斗完成签到 ,获得积分10
16秒前
16秒前
糊涂的剑发布了新的文献求助10
16秒前
Kira完成签到,获得积分10
18秒前
18秒前
无敌小汐完成签到,获得积分10
18秒前
FceEar完成签到,获得积分10
21秒前
丘比特应助张凡采纳,获得10
22秒前
FashionBoy应助zly采纳,获得10
22秒前
cgshao完成签到,获得积分10
22秒前
22秒前
浮游应助阿坤采纳,获得10
24秒前
7and7完成签到,获得积分10
25秒前
sw完成签到,获得积分10
25秒前
FashionBoy应助糊涂的剑采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959394
求助须知:如何正确求助?哪些是违规求助? 4220151
关于积分的说明 13140756
捐赠科研通 4003695
什么是DOI,文献DOI怎么找? 2190950
邀请新用户注册赠送积分活动 1205508
关于科研通互助平台的介绍 1116851