Anomaly detection and multi-step estimation based remaining useful life prediction for rolling element bearings

预言 滚动轴承 异常检测 估计员 卡尔曼滤波器 离群值 数据挖掘 计算机科学 支持向量机 颗粒过滤器 滤波器(信号处理) 工程类 人工智能 振动 统计 数学 物理 量子力学 计算机视觉
作者
Junyu Qi,Rui Zhu,Chenyu Liu,Alexandre Mauricio,Konstantinos Gryllias
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:206: 110910-110910 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110910
摘要

The prediction of the Remaining Useful Life (RUL) of rotating machinery targets the avoidance of sudden machine failures and the optimization of the maintenance schedules as well as the management of repairs and replacements. A number of statistical model-based prognostics methodologies have been proposed in recent literature but a number of open challenges still exist, blocking their integration in the industry: (i) The extraction of a high-quality Health Indicator (HI) is critical for bearings' prognostics but till now the trend of many classic HIs is often disturbed; deviating from a monotonical increase or decrease. (ii) The detection of the Start Prediction Time (SPT) on the HI is usually required in order to improve the accuracy of the RUL estimation but it can be incorrect especially when distinct random outliers occur. (iii) The widely applied RUL estimators, e.g. the Kalman filter (KF) and the Particle filter (PF), belong to the category of single-step estimation techniques that assume that the current step estimation depends only on the state of the previous step. However, the occurrence of bearings' damage is usually not a sudden change but an accumulated process. Therefore a novel prognostic strategy for Rolling Element Bearings (REB) is proposed in this paper, which integrates a robust anomaly detection technique, the Support Vector Data Description (SVDD), with a multi-step estimation method, the Moving Horizon Estimation (MHE). Various advanced entropy and sparsity HIs are extracted by signals filtered at different frequency bands. By comparing all the extracted HIs based on a proposed criterion, a premium prognostic HI is chosen from a specific frequency band. Moreover, the SVDD, deployed and combined with several proposed constraints, can robustly detect the occurrence of a bearing fault and decide the proper SPT. Furthermore, the MHE is combined with two popular exponential statistical models and a second-order polynomial model for bearings' prognostics. Experimental results from fifteen degraded bearings demonstrate that the MHE outperforms the classic Kalman filter and Particle filter. Moreover, the polynomial model achieves a better RUL estimation compared to the two classic exponential models in combination with the MHE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨小孩发布了新的文献求助10
1秒前
科目三应助小龚热心肠采纳,获得10
1秒前
活泼的机器猫完成签到,获得积分10
1秒前
2秒前
合适夏天完成签到,获得积分10
2秒前
鸽子的迷信完成签到,获得积分10
2秒前
3秒前
3秒前
jeanshe619完成签到,获得积分20
5秒前
李慧颖完成签到 ,获得积分20
5秒前
5秒前
花粉过敏完成签到,获得积分10
6秒前
6秒前
852应助乌龟娟采纳,获得10
6秒前
田様应助ly采纳,获得10
7秒前
7秒前
ouyggg发布了新的文献求助10
7秒前
杜四十929完成签到,获得积分10
7秒前
阿南完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
JamesPei应助科研渣渣采纳,获得10
10秒前
djiwisksk66发布了新的文献求助10
10秒前
10秒前
背后的穆完成签到,获得积分10
11秒前
jackie发布了新的文献求助10
11秒前
墨染锦年完成签到,获得积分10
11秒前
胡健发布了新的文献求助10
12秒前
12秒前
12秒前
lyj1234完成签到,获得积分20
12秒前
慕青应助zzzjh采纳,获得10
12秒前
orixero应助麦当劳信徒采纳,获得30
13秒前
liningyao完成签到,获得积分20
13秒前
Iris发布了新的文献求助10
13秒前
14秒前
无与伦比发布了新的文献求助80
14秒前
zsq完成签到 ,获得积分20
15秒前
无相变完成签到,获得积分10
15秒前
pp完成签到 ,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970572
求助须知:如何正确求助?哪些是违规求助? 3515219
关于积分的说明 11177438
捐赠科研通 3250374
什么是DOI,文献DOI怎么找? 1795265
邀请新用户注册赠送积分活动 875750
科研通“疑难数据库(出版商)”最低求助积分说明 805054