Anomaly detection and multi-step estimation based remaining useful life prediction for rolling element bearings

预言 滚动轴承 异常检测 估计员 卡尔曼滤波器 离群值 数据挖掘 计算机科学 支持向量机 颗粒过滤器 滤波器(信号处理) 工程类 人工智能 振动 统计 数学 物理 量子力学 计算机视觉
作者
Junyu Qi,Rui Zhu,Chenyu Liu,Alexandre Mauricio,Konstantinos Gryllias
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:206: 110910-110910 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110910
摘要

The prediction of the Remaining Useful Life (RUL) of rotating machinery targets the avoidance of sudden machine failures and the optimization of the maintenance schedules as well as the management of repairs and replacements. A number of statistical model-based prognostics methodologies have been proposed in recent literature but a number of open challenges still exist, blocking their integration in the industry: (i) The extraction of a high-quality Health Indicator (HI) is critical for bearings' prognostics but till now the trend of many classic HIs is often disturbed; deviating from a monotonical increase or decrease. (ii) The detection of the Start Prediction Time (SPT) on the HI is usually required in order to improve the accuracy of the RUL estimation but it can be incorrect especially when distinct random outliers occur. (iii) The widely applied RUL estimators, e.g. the Kalman filter (KF) and the Particle filter (PF), belong to the category of single-step estimation techniques that assume that the current step estimation depends only on the state of the previous step. However, the occurrence of bearings' damage is usually not a sudden change but an accumulated process. Therefore a novel prognostic strategy for Rolling Element Bearings (REB) is proposed in this paper, which integrates a robust anomaly detection technique, the Support Vector Data Description (SVDD), with a multi-step estimation method, the Moving Horizon Estimation (MHE). Various advanced entropy and sparsity HIs are extracted by signals filtered at different frequency bands. By comparing all the extracted HIs based on a proposed criterion, a premium prognostic HI is chosen from a specific frequency band. Moreover, the SVDD, deployed and combined with several proposed constraints, can robustly detect the occurrence of a bearing fault and decide the proper SPT. Furthermore, the MHE is combined with two popular exponential statistical models and a second-order polynomial model for bearings' prognostics. Experimental results from fifteen degraded bearings demonstrate that the MHE outperforms the classic Kalman filter and Particle filter. Moreover, the polynomial model achieves a better RUL estimation compared to the two classic exponential models in combination with the MHE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbpu230701完成签到,获得积分0
刚刚
Lenacici完成签到,获得积分10
1秒前
long发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
YY完成签到 ,获得积分10
4秒前
4秒前
徐进发布了新的文献求助10
7秒前
jiaolulu发布了新的文献求助10
7秒前
乐观银耳汤完成签到,获得积分10
8秒前
WJing完成签到,获得积分10
8秒前
lenetivy发布了新的文献求助20
8秒前
10秒前
linhanwenzhou发布了新的文献求助10
12秒前
yyy完成签到 ,获得积分10
12秒前
幽默的煎饼完成签到,获得积分10
12秒前
13秒前
搞怪不斜完成签到,获得积分10
13秒前
13秒前
xinxiangshicheng完成签到 ,获得积分10
14秒前
愤怒的小鸟完成签到,获得积分10
14秒前
MY完成签到,获得积分10
14秒前
顾矜应助lenetivy采纳,获得10
15秒前
自觉寒梦发布了新的文献求助10
15秒前
美好斓发布了新的文献求助10
15秒前
郑文涛完成签到,获得积分10
16秒前
JamesPei应助专注的白柏采纳,获得10
17秒前
YHY发布了新的文献求助10
19秒前
好吃发布了新的文献求助10
19秒前
拾光完成签到,获得积分10
20秒前
long完成签到 ,获得积分10
20秒前
天天向上发布了新的文献求助10
21秒前
6260完成签到,获得积分10
21秒前
pcr163应助linhanwenzhou采纳,获得50
22秒前
22秒前
酷酷元风完成签到,获得积分10
23秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029