Anomaly detection and multi-step estimation based remaining useful life prediction for rolling element bearings

预言 滚动轴承 异常检测 估计员 卡尔曼滤波器 离群值 数据挖掘 计算机科学 支持向量机 颗粒过滤器 滤波器(信号处理) 工程类 人工智能 振动 统计 数学 物理 量子力学 计算机视觉
作者
Junyu Qi,Rui Zhu,Chenyu Liu,Alexandre Mauricio,Konstantinos Gryllias
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:206: 110910-110910 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110910
摘要

The prediction of the Remaining Useful Life (RUL) of rotating machinery targets the avoidance of sudden machine failures and the optimization of the maintenance schedules as well as the management of repairs and replacements. A number of statistical model-based prognostics methodologies have been proposed in recent literature but a number of open challenges still exist, blocking their integration in the industry: (i) The extraction of a high-quality Health Indicator (HI) is critical for bearings' prognostics but till now the trend of many classic HIs is often disturbed; deviating from a monotonical increase or decrease. (ii) The detection of the Start Prediction Time (SPT) on the HI is usually required in order to improve the accuracy of the RUL estimation but it can be incorrect especially when distinct random outliers occur. (iii) The widely applied RUL estimators, e.g. the Kalman filter (KF) and the Particle filter (PF), belong to the category of single-step estimation techniques that assume that the current step estimation depends only on the state of the previous step. However, the occurrence of bearings' damage is usually not a sudden change but an accumulated process. Therefore a novel prognostic strategy for Rolling Element Bearings (REB) is proposed in this paper, which integrates a robust anomaly detection technique, the Support Vector Data Description (SVDD), with a multi-step estimation method, the Moving Horizon Estimation (MHE). Various advanced entropy and sparsity HIs are extracted by signals filtered at different frequency bands. By comparing all the extracted HIs based on a proposed criterion, a premium prognostic HI is chosen from a specific frequency band. Moreover, the SVDD, deployed and combined with several proposed constraints, can robustly detect the occurrence of a bearing fault and decide the proper SPT. Furthermore, the MHE is combined with two popular exponential statistical models and a second-order polynomial model for bearings' prognostics. Experimental results from fifteen degraded bearings demonstrate that the MHE outperforms the classic Kalman filter and Particle filter. Moreover, the polynomial model achieves a better RUL estimation compared to the two classic exponential models in combination with the MHE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高宇航完成签到,获得积分20
刚刚
刚刚
安诺完成签到,获得积分10
1秒前
汉堡包应助参宿七采纳,获得10
1秒前
Ava应助遇见采纳,获得10
1秒前
1秒前
曾经如风完成签到,获得积分10
1秒前
诗图完成签到,获得积分10
2秒前
Dobby完成签到,获得积分10
2秒前
3秒前
维生素CCC完成签到 ,获得积分10
4秒前
眯眯眼的慕蕊完成签到,获得积分10
4秒前
无花果应助中海采纳,获得10
4秒前
4秒前
情怀应助XCL采纳,获得10
4秒前
5秒前
身强力壮运气好完成签到,获得积分10
5秒前
我是老大应助sutychen采纳,获得10
5秒前
个性的紫菜应助灯灯采纳,获得20
6秒前
jjyy发布了新的文献求助30
6秒前
酷酷妙梦发布了新的文献求助10
6秒前
Charon发布了新的文献求助10
6秒前
Whiaper完成签到,获得积分10
8秒前
爱听歌的糖豆完成签到,获得积分10
8秒前
douzi完成签到,获得积分10
9秒前
HarryYang完成签到 ,获得积分10
10秒前
元谷雪发布了新的文献求助10
11秒前
11秒前
小明完成签到,获得积分10
11秒前
11秒前
五十一笑声完成签到,获得积分10
12秒前
Zander完成签到,获得积分10
12秒前
xyl_507完成签到 ,获得积分0
12秒前
12秒前
生椰拿铁不加生椰完成签到 ,获得积分10
12秒前
Cloud应助平常亦凝采纳,获得20
12秒前
tata0215完成签到 ,获得积分10
13秒前
susu完成签到 ,获得积分10
13秒前
13秒前
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143003
求助须知:如何正确求助?哪些是违规求助? 2794045
关于积分的说明 7809520
捐赠科研通 2450348
什么是DOI,文献DOI怎么找? 1303779
科研通“疑难数据库(出版商)”最低求助积分说明 627056
版权声明 601384