Anomaly detection and multi-step estimation based remaining useful life prediction for rolling element bearings

预言 滚动轴承 异常检测 估计员 卡尔曼滤波器 离群值 数据挖掘 计算机科学 支持向量机 颗粒过滤器 滤波器(信号处理) 工程类 人工智能 振动 统计 数学 物理 量子力学 计算机视觉
作者
Junyu Qi,Rui Zhu,Chenyu Liu,Alexandre Mauricio,Konstantinos Gryllias
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:206: 110910-110910 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110910
摘要

The prediction of the Remaining Useful Life (RUL) of rotating machinery targets the avoidance of sudden machine failures and the optimization of the maintenance schedules as well as the management of repairs and replacements. A number of statistical model-based prognostics methodologies have been proposed in recent literature but a number of open challenges still exist, blocking their integration in the industry: (i) The extraction of a high-quality Health Indicator (HI) is critical for bearings' prognostics but till now the trend of many classic HIs is often disturbed; deviating from a monotonical increase or decrease. (ii) The detection of the Start Prediction Time (SPT) on the HI is usually required in order to improve the accuracy of the RUL estimation but it can be incorrect especially when distinct random outliers occur. (iii) The widely applied RUL estimators, e.g. the Kalman filter (KF) and the Particle filter (PF), belong to the category of single-step estimation techniques that assume that the current step estimation depends only on the state of the previous step. However, the occurrence of bearings' damage is usually not a sudden change but an accumulated process. Therefore a novel prognostic strategy for Rolling Element Bearings (REB) is proposed in this paper, which integrates a robust anomaly detection technique, the Support Vector Data Description (SVDD), with a multi-step estimation method, the Moving Horizon Estimation (MHE). Various advanced entropy and sparsity HIs are extracted by signals filtered at different frequency bands. By comparing all the extracted HIs based on a proposed criterion, a premium prognostic HI is chosen from a specific frequency band. Moreover, the SVDD, deployed and combined with several proposed constraints, can robustly detect the occurrence of a bearing fault and decide the proper SPT. Furthermore, the MHE is combined with two popular exponential statistical models and a second-order polynomial model for bearings' prognostics. Experimental results from fifteen degraded bearings demonstrate that the MHE outperforms the classic Kalman filter and Particle filter. Moreover, the polynomial model achieves a better RUL estimation compared to the two classic exponential models in combination with the MHE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡发布了新的文献求助10
刚刚
Jieh发布了新的文献求助10
1秒前
1秒前
咩咩咩发布了新的文献求助10
1秒前
谈舒怡发布了新的文献求助10
2秒前
刘述发布了新的文献求助10
2秒前
2秒前
标致谷菱发布了新的文献求助10
3秒前
搜集达人应助147采纳,获得10
3秒前
雪山飞龙发布了新的文献求助10
4秒前
欧阳慕山发布了新的文献求助10
4秒前
5秒前
科研小猫完成签到,获得积分10
5秒前
无花果应助邢文瑞采纳,获得10
6秒前
6秒前
芋圆Z.发布了新的文献求助10
7秒前
蒋瑞轩发布了新的文献求助10
7秒前
寻123发布了新的文献求助10
8秒前
善学以致用应助科研怪人采纳,获得10
9秒前
cxy发布了新的文献求助10
12秒前
13秒前
13秒前
杭谷波完成签到,获得积分10
14秒前
爆米花应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
Jasper应助霏166采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
16秒前
小红发布了新的文献求助10
16秒前
烟花应助开朗大雁采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516