亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brain metastasis tumor segmentation and detection using deep learning algorithms: A systematic review and meta-analysis

分割 人工智能 荟萃分析 深度学习 子群分析 计算机科学 病变 样本量测定 机器学习 医学 掷骰子 模式识别(心理学) 算法 病理 数学 统计
作者
Tingwei Wang,Ming‐Sheng Hsu,Wei‐Kai Lee,Hung-Chuan Pan,Huai‐Che Yang,Cheng‐Chia Lee,Yu‐Te Wu
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:190: 110007-110007 被引量:8
标识
DOI:10.1016/j.radonc.2023.110007
摘要

Background Manual detection of brain metastases is both laborious and inconsistent, driving the need for more efficient solutions. Accordingly, our systematic review and meta-analysis assessed the efficacy of deep learning algorithms in detecting and segmenting brain metastases from various primary origins in MRI images. Methods We conducted a comprehensive search of PubMed, Embase, and Web of Science up to May 24, 2023, which yielded 42 relevant studies for our analysis. We assessed the quality of these studies using the QUADAS-2 and CLAIM tools. Using a random-effect model, we calculated the pooled lesion-wise dice score as well as patient-wise and lesion-wise sensitivity. We performed subgroup analyses to investigate the influence of factors such as publication year, study design, training center of the model, validation methods, slice thickness, model input dimensions, MRI sequences fed to the model, and the specific deep learning algorithms employed. Additionally, meta-regression analyses were carried out considering the number of patients in the studies, count of MRI manufacturers, count of MRI models, training sample size, and lesion number. Results Our analysis highlighted that deep learning models, particularly the U-Net and its variants, demonstrated superior segmentation accuracy. Enhanced detection sensitivity was observed with an increased diversity in MRI hardware, both in terms of manufacturer and model variety. Furthermore, slice thickness was identified as a significant factor influencing lesion-wise detection sensitivity. Overall, the pooled results indicated a lesion-wise dice score of 79%, with patient-wise and lesion-wise sensitivities at 86% and 87%, respectively. Conclusions The study underscores the potential of deep learning in improving brain metastasis diagnostics and treatment planning. Still, more extensive cohorts and larger meta-analysis are needed for more practical and generalizable algorithms. Future research should prioritize these areas to advance the field. This study was funded by the Gen. & Mrs. M.C. Peng Fellowship and registered under PROSPERO (CRD42023427776).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研小白采纳,获得10
4秒前
wlei完成签到,获得积分10
4秒前
顾矜应助努力科研采纳,获得10
5秒前
6秒前
SHIROKO完成签到,获得积分10
11秒前
Milesgao发布了新的文献求助20
21秒前
27秒前
miracle1005发布了新的文献求助10
31秒前
科研小白发布了新的文献求助10
32秒前
大模型应助九黎采纳,获得10
38秒前
点点zzz发布了新的文献求助30
41秒前
坦率的丹烟完成签到 ,获得积分10
41秒前
hesurina完成签到,获得积分10
45秒前
复杂的泥猴桃完成签到,获得积分10
45秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
Ava应助点点zzz采纳,获得10
49秒前
科研通AI5应助科研小白采纳,获得10
51秒前
59秒前
1分钟前
1分钟前
九黎发布了新的文献求助10
1分钟前
Akim应助yyyy采纳,获得10
1分钟前
webmaster完成签到,获得积分10
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
噔噔完成签到,获得积分10
1分钟前
大英留子千早爱音完成签到,获得积分10
1分钟前
1分钟前
慕青应助科研小白采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
愉快凡旋发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
叶123完成签到,获得积分10
1分钟前
爱撒娇的无施完成签到,获得积分10
2分钟前
努力科研完成签到,获得积分10
2分钟前
Alex发布了新的文献求助30
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865