钝化
配体(生物化学)
纳米晶
钙钛矿(结构)
化学
溶解
发光二极管
溶解度
溴化物
化学工程
材料科学
纳米技术
无机化学
图层(电子)
结晶学
光电子学
有机化学
受体
工程类
生物化学
作者
Feng Zhao,Hong‐Wei Duan,Sheng‐Nan Li,Jia‐Lin Pan,Wan‐Shan Shen,Shengming Li,Qiao Zhang,Ya‐Kun Wang,Liang‐Sheng Liao
标识
DOI:10.1002/anie.202311089
摘要
Resurfacing perovskite nanocrystals (NCs) with tight-binding and conductive ligands to resolve the dynamic ligands-surface interaction is the fundamental issue for their applications in perovskite light-emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these ligands either exhibit weak Lewis acid/base interactions or need high polar solvents for dissolution and passivation, resulting in a compromise in the efficiency and stability of PeLEDs. Herein, we report a chemically reactive agent (Iodotrimethylsilane, TMIS) to address the trade-off among conductivity, solubility and passivation using all-inorganic CsPbI3 NCs. The liquid TMIS ensures good solubility in non-polar solvents and reacts with oleate ligands and produces in situ HI for surface etching and passivation, enabling strong-binding ligands on the NCs surface. We report, as a result, red PeLEDs with an external quantum efficiency (EQE) of ≈23 %, which is 11.2-fold higher than the control, and is among the highest CsPbI3 PeLEDs. We further demonstrate the universality of this ligand strategy in the pure bromide system (CsPbBr3 ), and report EQE of ≈20 % at 640, 652, and 664 nm. This represents the first demonstration of a chemically reactive ligand strategy that applies to different systems and works effectively in red PeLEDs spanning emission from pure-red to deep-red.
科研通智能强力驱动
Strongly Powered by AbleSci AI