Identification of the large-area and long-duration drought and its evolutionary characteristics in Nenjiang River basin

环境科学 气候变化 构造盆地 流域 水资源 自然灾害 持续时间(音乐) 自然地理学 气候学 水文学(农业) 地理 生态学 地质学 气象学 生物 艺术 古生物学 地图学 文学类 岩土工程
作者
Shanjun Zhang,Jia Liu,Chuanzhe Li,Fuliang Yu,Lanshu Jing,Yizhi Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130218-130218 被引量:3
标识
DOI:10.1016/j.jhydrol.2023.130218
摘要

The effects of droughts on food, economic, and social security have long been a worldwide significant issue. Recently droughts have showed a development trendency with a longer duration and a wider impact area due to the climate change and the human activities. In this study, the Gravity Recovery and Climate Experiment (GRACE) satellite data were used to develop the water storage deficit index, based on which the large-area and long-duration drought (LLD) were identified using the theory of runs and the copula functions. In the Nenjiang River basin, two drought events with a joint distribution frequency of greater than 75 % were identified as LLD events, with a drought area of 29.7 × 104 km2 and a drought duration of 27 and 33 months respectively. In terms of drought characteristic indicators, the average values of drought intensity, drought severity, and extreme intensity for LLD events were 1.04, 31.71, and 2.30, which is significantly higher than for other types of drought events. The LLD events take a longer time to develop to the peak intensity than other types of drought events, but their drought centroid migration is more widespread. This suggests that the propagation process of the LLD events is more complex and the spatial and temporal distribution of drought is more uneven. Thus, we recommended that appropriate actions and regulations be adopted for different regions in different periods to reallocate water resources according to the drought-related losses and management expenses. This study introduces an identification method of the LLD events, combined with the analyses of evolutionary charaterisitics in space and time. It is hoped that the outcomes of the study can help watershed managers to clearly and conveniently identify the LLD events based on the predicted drought duration and area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美紫槐应助smile采纳,获得20
1秒前
dawnfrf应助smile采纳,获得30
1秒前
顾矜应助smile采纳,获得10
1秒前
Foalphaz发布了新的文献求助10
2秒前
2秒前
水凝胶发布了新的文献求助10
3秒前
缥缈语蕊发布了新的文献求助10
3秒前
冷酷男人发布了新的文献求助10
3秒前
4秒前
5秒前
Go发布了新的文献求助10
5秒前
5秒前
7秒前
魔幻的凝荷完成签到,获得积分20
9秒前
孤独兰发布了新的文献求助50
9秒前
iris发布了新的文献求助10
9秒前
10秒前
yyyg完成签到,获得积分10
10秒前
脑洞疼应助小y要读书采纳,获得10
10秒前
Ehassup完成签到,获得积分10
10秒前
惕守完成签到,获得积分10
10秒前
Pupil发布了新的文献求助10
11秒前
11秒前
Lucas应助乐观的颦采纳,获得10
11秒前
shlin完成签到,获得积分10
12秒前
王焕玉完成签到,获得积分10
13秒前
求助人员发布了新的文献求助10
13秒前
Yan完成签到,获得积分10
14秒前
14秒前
手抖的粉恐龙完成签到,获得积分10
15秒前
wzj发布了新的文献求助10
15秒前
科研发布了新的文献求助10
16秒前
16秒前
16秒前
飘逸问萍完成签到 ,获得积分10
16秒前
Jerry完成签到,获得积分10
17秒前
18秒前
Owen应助专注醉蓝采纳,获得10
19秒前
棒棒羊完成签到,获得积分10
20秒前
wuxunxun2015发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604322
求助须知:如何正确求助?哪些是违规求助? 4689080
关于积分的说明 14857878
捐赠科研通 4697618
什么是DOI,文献DOI怎么找? 2541249
邀请新用户注册赠送积分活动 1507374
关于科研通互助平台的介绍 1471874